基本介绍
王先伟:中山大学“百人计划”引进人才,地理科学与规划学院教授、博导;美国德州大学博士、加州大学博士后,英国布里斯托大学访问教授;广东省公共安全与灾害工程技术研究中心副主任,Water学术期刊编辑,中国地理学会、水利学会和遥感及自然灾害协会等会员。主要从事GIS空间分析与应用开发、水文遥感与水工测绘、洪涝模拟与洪灾风险管理等方向的研究;获得了国家自然科学基金、科技部重点研发计划、863计划/973计划、国家气象局、广东省气象局、广东省水利厅等单位项目的资助;获得2021年度广东省科技进步奖二等奖1项(排名第一)、申请授权专利4项、软件著作权11项,完成学术专著6部,发表SCI论文60余篇,被SCI论文引用超过3000次。
学历背景
2004.08-2008.05,博士,环境科学与工程,University of Texas at San Antonio, TX, USA,美国;
1999.09-2002.07,硕士,环境科学,中国科学院南海海洋研究所, 广州;
1995.09-1999.07,学士,四川师范大学,成都;
工作经历
2016.12-2017.12,访问学者,University of Bristol, Bristol, UK.
2015.01- 目前, 教授,中山大学地理科学与规划学院,广州
2011.02-2014.12,副教授,中山大学地理科学与规划学院,广州
2008.06-2011.01,博士后,University of California, Irvine, CA, USA
主持的项目(摘选)
11) 国家重点研发计划项目专题:大湾区河口风暴潮和枯水期两类咸潮上溯机制及其演变机理识别,2021.12-2024.11;
10) 国家基金面上项目:#41871085,基于RTK观测与洪潮耦合模拟的珠江三角洲网河水道壅水机制研究,2019.01-2022.12;
9) 2016广东省水利科技创新重点项目:#2016-19,机载激光三维数据河道围堤险情判别及洪潮变化对江河防洪影响分析,2016.4-2018.12;
8)国家基金面上项目:#41371404 ,基于IceBridge 和ICESat激光雷达高程的南极海冰和积雪厚度分析,2014.01-2017.12;
7) 国家973基础研究计划项目子课题:广州市城市暴雨内涝灾害风险综合评估,2012.1-2016.12;
6) 国家863高技术研发计划项目子课题:城市洪涝应急响应示范系统,2012.1-2014.12;
5)国家气候中心项目:台风灾害风险区划的风暴潮风险区划,2015.1-2016.12;
4) 广东省气象局/北京超图软件股份有限公司:广东山洪地质灾害防治气象保障工程山洪地质灾害气象风险预报系统,2015.1-2015.12;
3) 荒漠与绿洲生态国家重点实验室开放基金:天山地区积雪变化对水资源可持续利用的影响,2014.1-2016.12;
2) 中山大学高校基本科研业务费-青年教师重点培育项目:中亚山地冰雪变化对全球变暖的响应,2015.1-2016.12;
1) 中山大学百人计划科研启动基金,水文遥感,2011.3-2013.2。
参与的项目(摘选)
2) 南方海洋科学与工程广东省实验室(珠海)创新团队建设: 南海海岸带变化与物质迁移. 3000万元,首席科学家:吴加学和林群声;团队核心成员:王先伟等,2020.1-2022.12.
1) 国家863计划主题项目课题:城市复杂时空数据集成分析与空间决策模拟,435万,中山大学课题负责人:柳林,其他参加人员:王先伟等,2013.1-2015.12;
获奖
王先伟,杨跃, 黄华兵,王高丹, 李秋萍, 潘璀林等. 2022. 南方暴雨洪涝灾害防控关键技术研发与应用. 2021年广东省科技进步奖二等奖,粤府证【2022】0869号,广东省人民政府颁发。
论著专利
(IF: Impact Factor,* corresponding author, #supervised student)
英文期刊论文
研究方向(1) 工程测绘建模 (Engineering Surveying & Modeling)
5) Wang, X., Y. Wang#, Y. Wang & T.O. Chan*. (2025). A fast and reliable crack measurement approach based on perspective projection simulation models and UAV imaging for dam and levee inspections, Survey Review, DOI: 10.1080/00396265.2025.2486713.
4) Zou, L., Z. He*, X. Wang and Y. Liang. (2025). Spatiotemporal typhoon damage assessment: a multi-task learning method for location extraction and damage identification from social media texts. ISPRS Int. J. Geo-Inf. 2025, 14, 189. https:// doi.org/10.3390/ijgi14050189.
3) Wang, X., Y. Wang#, X. Liao, Y. Huang*, Y. Wang, Y. Ling and T.O. Chan. (2024). Monitoring of levee deformation for flood risk management using airborne LiDAR 3D point clouds. Water, 16, 559. https://doi.org/10.3390/w16040559.
2) Chen, M., T.O. Chan*, X. Wang*, M. Luo, Y. Lin, H. Huang, Y. Sun, G. Cui and Y. Huang. (2020). A risk analysis framework for transmission towers under potential pluvial flood -LiDAR survey and geometric modelling. International Journal of Disaster Risk Reduction, DOI: https://doi.org/10.1016/j.ijdrr.2020.101862.
1) Wang*, X., L. Wang# and T. Zhang. (2020). Geometry-based assessment of levee stability and overtopping using airborne LiDAR altimetry: a case study in the Pearl River Delta, Southern China. Water, 12, 403; doi:10.3390/w12020403.
研究方向(2) 洪涝模拟(Flood Modelling)
23)Fang#, Y., X. Wang*, H. Liu*, J. Ren, P. Yuan, Y. Ning and X. Zhang. (2025). Varying flow division forced by streamflow and tidal force in bifurcation channels in the Pearl River Delta, South China. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2501736.
22)Zhong#, Z., X. Wang*, Y. He, S. Cai and H. Tong. (2025). Exceptional Backwater Effects on Wedge Storages and Flood Stages in a Large River-Type Reservoir: HEC-RAS Modeling of Feilaixia Gorge in the North River, South China. Water, 17, 1447. https://doi.org/10.3390/w17101447.
21) Fang#, Y., X. Wang*, J. Ren*, H. Liu, P. Yuan and Y. Ning. (2025). Distinct flood diversion mechanisms and comparable effects on discharge fraction and peak water levels over X-shaped and H-shaped composite river nodes. Water, 17(7), 1015. https://doi.org/10.3390/w17071015.
20) Han#, X., X. Wang*, Z. He and J. Wu. (2024). Significant wave height retrieval in tropical cyclone conditions using CYGNSS data. Remote Sensing, 16(24), 4782; https://doi.org/10.3390/rs16244782.
19) Ning#, Y., X. Wang*, Y. Fang and P. Yuan. (2024). Influence of tropical cyclone moving speeds on the attenuation effect of Holland surface wind and storm surge simulation in Guangdong Province, China. Geomatics, Natural Hazards and Risk, 15(1), 2436539, https://doi.org/10.1080/19475705.2024.2436539.
18) Gao#, Y., X. Wang*, C. Dong, J. Ren, Q. Zhang and Y. Huang. (2024). Characteristics and influencing factors of Storm surge-Induced Salinity Augmentation in the Pearl River Estuary, South China. Sustainability,16, 2254, https://doi.org/10.3390/su16062254.
17) Huang, H., Y. Pan, C. Wang and X. Wang. (2023). Nonlinear flood responses to tide level and land cover changes in small watersheds. Land, 12, 1743. https://doi.org/10.3390/land12091743.
16) Fang#, Y., X. Wang*, J. Ren, H. Wu and Y. Wang. (2023). Driving force and influence of flood diversion on discharge fraction and peak water levels at an H-shaped Sixianjiao river node in the Pearl River Delta, South China. Water, 15, 1970. https://doi.org/10.3390/w15111970.
15) Yu#, Q., X. Wang*, Y. Fang, Y. Ning, P. Yuan, B. Xi*, R. Wang. (2023). Comprehensive investigation on spatiotemporal variations of tropical cyclones activities in the Western North Pacific, 1950-2019. Journal of Marine Science and Engineering,11, 946. https://doi.org/10.3390/jmse11050946.
14) Ning#, Y., X. Wang*, Q. Yu, D. Liang, and J. Zhai. (2023). Rapid damage prediction and risk assessment for tropical cyclones at a fine grid in Guangdong Province, South China. International Journal of Disaster Risk Science, 14: 237-252. Doi:10.1007/s13753-023-00485-y.
13) Wang*, X., Y. Guo# and J. Ren. (2021). The coupling effect of flood discharge and storm surges on extreme flood stages: a case study in the Pearl River Delta, South China. International Journal of Disaster Risk Science, 12(4): 1-15, doi : 10.1007/s13753-021-00355-5. (IF_2020=3.727)
12) Zhang, H., Z. Qi*, X. Li, Y. Chen, X. Wang and Y. He. (2021). An urban flooding index for unsupervised inundated urban area detection using sentinel-1 polarimetric SAR images. Remote Sensing, 2021, 13, 4511. https://doi.org/10.3390/rs13224511. (IF_2020=4.848)
11) Huang, H., Y. Pan and X. Wang*. (2020). A simplified representation of pressure flow from surface slopes in urban sewer systems. Water, 12, 2778; doi:10.3390/w12102778. (IF_2020=3.103)
10) Huang, H., X. Chen*, X. Wang*, X.N. Wang and L. Liu. (2019). A depression-based index to represent topographic control in urban pluvial flooding. Water, 11, 2115; doi:10.3390/w11102115. (IF_2019=2.544)
9) Huang, H., L. Zhang, L. Liu*, X. Wang*, X.N. Wang, C. Pan and D. Wang. (2019). Assessing the mitigation effect of deep tunnels on urban flooding: a case study in Guangzhou, China, Urban Water Journal, DOI: 10.1080/1573062X.2019.1669186. (IF_2018=2.083)
8) Pan#, C., X. Wang*, L. Liu*, D.S. Wang, and H. Huang. (2019). Characteristics of heavy storms and the scaling relation with air temperature by event process-based analysis in South China. Water, 2019, 11, 185; doi:10.3390/w11020185. (IF_2019=2.544)
7) Wang*, X., and H. Xie*. (2018). A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management. Water, 2018, 10, 608; doi:10.3390/w10050608. (IF_2019=2.544)
6) Huang, H., X. Chen, Z. Zhu, Y. Xie, L. Liu, X. Wang, X.N. Wang, and K. Liu. (2018). The changing pattern of urban flooding in Guangzhou, China. Science of the Total Environment, 622-623: 394-401. doi: 10.1016/j.scitotenv.2017.11.358. (IF_2017=4.610)
5) Wang#, X.N., X. Wang*, J. Zhai, X. Li, H. Huang and H. Sun. (2017). Improvement to flooding risk assessment of storm surges by residual interpolation in the coastal areas of Guangdong Province, China. Quaternary International, doi: 10.1016/j.quaint.2016.12.025. (IF_2017=2.163)
4) Wang, R., J. Chen* and X. Wang*. (2017). Comparison of IMERG Level-3 and TMPA 3B42V7 in estimating typhoon-related heavy rain. Water, 9(4), 276; doi:10.3390/w9040276 (IF_2018=2.524)
3) Pan#, C., X. Wang*, L. Liu*, H. Huang and D.S. Wang. (2017). Improvement to the Huff Curve for Design Storms and Urban Flooding Simulations in Guangzhou, China. Water, 9(6), 411; doi:10.3390/w9060411. (IF_2018=2.524)
2) Wang#, D.S., X. Wang*, L. Liu*, H. Huang, C. Pan, and D.G. Wang. (2016). Evaluation of CMPA precipitation estimate in the evolution of typhoon-related storm rainfall events in Guangdong province, China. Journal of Hydroinformatics, jh2016241, doi: 10.2166/hydro.2016.241.(IF_2016=1.634)
1) Liu*,L., Y. Liu, X. Wang, D. Yu, K. Liu, H. Huang and G. Hu. (2015). Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata. Natural Hazards and Earth System Sciences, 15. 381-391, doi:10.5194/nhessd-2-6173-2014. (IF_2014=1.735)
研究方向(3) 水文遥感 (RS in Hydrology)
14)Jiang, D., C. Dong*, Z. Ma, X. Wang, K. Lin, F. Yang and X. Chen. (2024). Advancing Saltwater Intrusion Monitoring through Remote Sensing with UAV-borne Hyperspectral and Satellite Multispectral Images, and Machine Learning Techniques. Remote Sensing of Environment, 308, 114198, https://doi.org/10.1016/j.rse.2024.114198.
13)Yuan#, P., X. Wang*, Y. Zhou*, Z. Qi, K. Liu, Y. Fang and Y. Ning. (2024). Evolutionary pattern and influencing factors of the aquaculture development in the Guangdong-Hong Kong-Macao Greater Bay Area during 1986-2020. Ecological Indicator, 161, 111952. https://doi.org/10.1016/j.ecolind.2024.111952.
12) Wang#, D.S., X. Wang*, L. Liu*, D.G. Wang, and Z. Zeng. (2021). Urban signatures in the spatial clustering of precipitation extremes over mainland China. Journal of Hydrometeorology, doi: 10.1175/jhm-d-20-0063.1. (IF_2020=4.349) (Article.pdf)
11) Lin, Z., T.O. Chan, E. Ge, X. Wang, Y. Zhao, Y. Yang, G. Ning, Z. Zeng, M. Luo*. (2020). Effects of urban land expansion on decreasing atmospheric moisture in Guangdong, South China. Urban Climate, 32, 100626, https://doi.org/10.1016/j.uclim.2020.100626. (IF_2019=3.834)
10) Wang#, D.S., X. Wang*, L. Liu*, D.G. Wang, X. Liang, C. Pan and H. Huang. (2018). Comprehensive evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in Guangdong Province, China. International Journal of Climatology, 2018, 1-18; DOI: 10.1002/joc.5839. (IF_2017=3.100) (Article.pdf)
9) Wang#, D.S., D. Wang*, L. Liu and X. Wang. (2018). Use of high-resolution precipitation observations in quantifying the effect of urban extent on precipitation characteristics for different climate conditions over the Pearl River Delta, China. Atmospheric Science letters, DOI: 10.1002/asl.820. (IF_2017=1.198) (Article.pdf)
8) Wang*, X., M. Liu# and L. Liu. (2014). Responses of MODIS spectral indices to typical drought events from 2000 to 2012 in Southwest China. Journal of Remote Sensing,18(2), 433-442. (Article.pdf)
7) Wang*, X.,H. Xie, N. Mazari, H. Sharif and J. Zeitler. (2013). Evaluation of the near-real time NEXRAD DSP Product in the evolution of heavy rain events on the Upper Guadalupe River Basin, Texas. Journal of Hydroinformatics, 15.2,doi: 10.2166/hydro.2012.016. (IF_2014=1.388) (Article.pdf)
6) Wang*, X., C. de Linage and H. Xie. (2013). How much water is seeping off the Three Gorges Reservoir? SPIE Newsroom, 10.1117/2.1201308.004952. (Article.pdf)
5) Wang* X., Y. Chen#, L. Song, X. Chen, H. Xie and L. Liu. (2013). Analysis of lengths, water areas and volumes of the Three Gorges Reservoir at different water levels using Landsat images and SRTM DEM data. Quaternary International,304,115-125.(IF_2014=2.062) (Article.pdf)
4) Wang*, X., C.R., Linage, J. Famiglietti and C. S. Zender. (2011). Gravity Recovery and Climate Experiment detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Water Resources Research, 47, 1-13, doi:10.1029/2011WR010534.(IF_2016=4.397) (Article.pdf)
3) Schnur*, M. T. S., H. Xie and X. Wang. (2010). Estimating Root Zone Soil Moisture at Distant Sites Using MODIS NDVI and EVI in a Semi-Arid Region of Southwestern USA. Ecological Informatics, 5, 400-409, doi:10.1016/j.ecoinf.2010.05.001. (IF_2014= 1.727) (Article.pdf)
2) Wang, X., H. Xie*, H. Sharif, & J. Zeitler. (2008). Validating NEXRAD MPE and Stage III precipitation products for uniform rainfall on the Upper Guadalupe River Basin of the Texas Hill Country. Journal of Hydrology, 348,73-86.(IF_2014=3.053) (Article.pdf)
1) Wang, X., H. Xie*,H. Guan, & X. Zhou. (2007). Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of Hydrology, 340, 12-24. (IF_2014=3.053) (Article.pdf)
研究方向(4) 冰雪遥感 (RS in Cryosphere)
15) Wang*, X., W. Jiang#, H. Xie, S. Ackley and H. Li. (2020). Decadal Variations of Sea Ice Thickness in the Amundsen‐Bellingshausen and Weddell Seas Retrieved From ICESat and IceBridge Laser Altimetry, 2003–2017. Journal of Geophysical Research-Oceans, jgrc24042, doi: 10.1029/2020JC016077. (IF_2019=3.559) (Article.pdf)
14) Tian, L., Xie*, H., Ackley, S., Tang, J., Mestas-Nuñez, A., & Wang, X. 2020. Sea-ice freeboard and thickness in the Ross Sea from airborne (IceBridge 2013) and satellite (ICESat 2003–2008) observations. Annals of Glaciology, 1-16. doi:10.1017/aog.2019.49.(IF_2019=3.131) (Article.pdf)
13) Wang*, X., H. Chen# and Y. Chen. (2018). Topography-Related Glacier Area Changes in Central Tianshan from 1989 to 2015 Derived from Landsat Images and ASTER GDEM Data. Water, 10, 555; doi:10.3390/w10050555. (IF_2017=2.069) (Article.pdf)
12) Wang*, X., H. Chen# and Y. Chen. (2017). Large differences between glaciers 3D surface extents and 2D planar areas in Central Tianshan. Water, 9(4), 282; doi:10.3390/w9040282. (2017=2.069) (Article.pdf)
11) Wang*, X., Y. Zhu#, Y. Chen, H. Liu, H. Huang, K. Liu, and Lin Liu. (2017). Influences of forest on MODIS snow cover mapping and snow variations in the Amur River basin in Northeast Asia during 2000–2014. Hydrological Processes, DOI: 10.1002/hyp.11249. (IF_2017=3.182) (Article.pdf)
10) Wang*, X., F. Guan#, J. Liu, H. Xie, and S. Ackley. (2016). An improved approach of total freeboard retrieval with IceBridge Airborne Topographic Mapper (ATM) elevation and Digital Mapping System (DMS) images. Remote Sensing of Environment,184, 582-594.doi:10.1016/j.rse.2016.08.002.(IF_2016=6.265) (Article.pdf)
9) Wang*, X., H. Zheng#, Y. Chen, H. Liu, L. Liu, H. Huang and K. Liu. (2014). Mapping snow cover variations using a MODIS daily cloud-free snow cover product in Northeast China. Journal of Applied Remote Sensing, 8(1), 084681. doi:10.1117/1.JRS.8.084681.(IF_2016=1.107) (Article.pdf)
8) Wang*, X., H. Xie, Y. Ke#, S. Ackley and L. Liu. (2013). A method to automatically determine sea level for referencing snow freeboard and computing sea ice thickness from NASA IceBridge airborne LIDAR. Remote Sensing of Environment, 131, 160-172.(IF_2014=6.393) (Article.pdf)
7) Yu, H., X. Zhang, T. Liang*, H. Xie, X. Wang, Q. Feng and Q. Chen. (2012). A new approach of dynamic monitoring of 5-day snow cover extent and snow depth based on MODIS and AMSR-E data from Northern Xinjiang region. Hydrological Processes, 26,3052-3061.(IF_2016=3.014) (Article.pdf)
6) Wang*, X. and C.S. Zender. (2011). Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear Baseline Surface Radiation Network measurements. Journal of Geophysical Research,116,F03008,doi:10.1029/2010JF001864. (IF_2014=3. 426) (Article.pdf)
5) Wang*, X. and C. Zender. (2010). Constraining MODIS snow albedo bias at large solar zenith angles: implications for surface energy budget in Greenland. Journal of Geophysical Research, 115, F04015, doi:10.1029/2009JF001436.(IF_2014=3. 426) (Article.pdf)
4) Wang*, X. and C. Zender. (2010). MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sensing of Environment, 114, 563-575.(IF_2014=6.393) (Article.pdf)
3) Wang*, X.& H. Xie. (2009). New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. Journal of Hydrology, 371, 192-200. (IF_2014=3.053) (Article.pdf)
5) Wang, X., H. Xie*, T. Liang & X. Huang. (2009). Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in Northern Xinjiang, China. Hydrological Processes, 23, 419-429. (IF_2014=2.677) (Article.pdf)
2) Xie*, H., X. Wang & T. Liang. (2009). Development and assessment of combined Terra and Aqua MODIS snow cover products in Colorado Plateau, USA and northern Xinjiang, China. Journal of Applied Remote Sensing, Vol.3, 033559, 1-14.(IF_2014=1.183) (Article.pdf)
1) Wang, X., H. Xie*, & T. Liang. (2008). Evaluation of MODIS snow cover and its application in the Northern Xinjiang, China. Remote Sensing of Environment, 112, 1497–1513. (IF_2014=6.393) (Article.pdf)
(5) 其它方向 Others
4) Liang, J., X. Liu*, K. Huang, X. Li, D. Wang and X. Wang. (2013). Automatic Registration of Multi-Sensor Images Using an Integrated Spatial and Mutual Information (SMI) Metric. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2013.2242895.(IF_2014=3.514)
3) Du*, Y., X. Wang, X. Yang, W. Ma, H. Ai and X. Wu. (2013). Impacts of climate change on human health and adaptation strategies in South China. Advances in Climate Change Research,4(4), 208-214.
2) Du*, Y., X. Cheng, X. Wang, H. Ai, H. Duan and X. Wu. (2013). A review of assessment and adaptation strategy to climate change impacts on the coastal areas in South China. Advances in Climate Change Research,4(4), 201-207.
1) Du*, Y., H. Ai, H. Duan, Y. Hu, X. Wang, J. He, H. Wu and X. WU. (2013). Changes in climate factors and extreme climate events in South China during 1961-2010. Advances in Climate Change Research,4(1), 1-11.
中文期刊论文
10)王先伟*,宁亚洲,方勇军,袁培卿,高一骁等. 暴雨洪涝灾情快速监测评估技术框架体系与应用: 以2022 年6 月北江流域洪水灾情分析为例[J]. 水利水电技术(中英文), 2023, 54(3): 1-20. (Article.pdf)
9)徐张帆#,王先伟*. (2021). 平原联围感潮河网暴雨洪涝灾害风险分析——以珠江三角洲中顺大围为例[J/OL].水利水电技术(中英文),2021, 52(8):1-19.(Article.pdf)
8) 王喜娜#, 王先伟, 黄华兵, 刘春霞. (2021). 基于GIS的风暴潮灾害风险预警方法研究[J]. 中国防汛抗旱, 2021, 31(10): 15-20. (Article.pdf)
7) 黄华兵*,王先伟,柳林. (2021). 城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展, 2021,40(6): 1048-1059. (Article.pdf)
6) 张麟, 黄华兵*, 王先伟, 柳林, 黄容, 郭明月. (2018). 城市内涝模型参数灵敏度分析方法比较[J]. 中国给水排水, 2021, 34(3), 129-134. (Article.pdf)
5) 刘勇#, 柳林*, 王先伟, 刘凯, 黄华兵, 张韶月. (2015). 建筑物在减轻城市洪涝灾害中的作用分析[J]. 自然灾害学报, 2015, 24(5): 68-74. (Article.pdf)
4) 刘勇#, 张韶月, 柳林*, 王先伟, 黄华兵. (2015). 智慧城市视角下城市洪涝模拟研究综述[J]. 地理科学进展, 2015, 34(4): 494-504. (Article.pdf)
3) 王先伟*, 刘梅#, 柳林. (2014). MODIS光谱指数在中国西南干旱监测中的应用[J],遥感学报,2014, 18(2), 443-453. (Article.pdf)
2) 王先伟, 温伟英*, 刘翠梅. (2003). 珠江口及附近海域夏季氮的化学形式分布研究[J]. 海洋科学. 2003, 27(4): 49-53.
1) 何雪琴*, 何清溪, 王先伟. (2001). 燃煤电厂烟气脱硫工艺研究进展[J]. 广州环境科学, 2001, 16(1): 5-8.
专著
6) 王先伟(主编),卓莉,刘凯,石茜,齐志新,李文楷,贺智(编委).《遥感概论》,广州,中山大学出版社, 2024.3, 遥感与地理信息基础系列教程,ISBN 978-7-306-08025-7.
5) Wang*, X. (2019). Flooding Hazards and Risk Analysis in the Pearl River Delta, China. Book Chapter in Challenges towards Ecological Sustainability in China: An Interdisciplinary Perspective. Edited by Xiaojun Yang and Shijun Jiang. Publisher: Springer Nature Switzerland, ISBN 978-3-030-03483-2/9. DOI https://doi.org/10.1007/978-3-030-03484-9.
4) Xie, H. and X. Wang (Editors). (2018). Applications of Remote Sensing/GIS in Water Resources and Flooding Risk Managements. Multidisciplinary Digital Publishing Institute (MDPI), 2018.
3) 王先伟, 王喜娜. (2018). 风暴潮灾害风险评估技术.《气象灾害风险评估技术指南》第13章. 姜彤,王艳君,翟建青主编。气象出版社,2018.8,北京,ISBN: 978-7-5029-6820-5。
2) Xie*, H., T. Liang, X. Wang and G. Zhang. (2015). Remote sensing mapping and modeling of snow cover parameters and applications. Chapter 6: Remote Sensing Handbook Volume III: Water Resources, Disasters and Urban-Monitoring, Modeling and Mapping, Editor-in-Chief: Dr. Prasad S. Thenkabail. Publisher: CRC Press. Nov 17, 2015. ISBN-10: 1482218011; ISBN-13: 978-1482218015.
1) Wang*,X., H. Xie and T. Liang. (2014). Spatiotemporal variation of snow cover from space in Northern Xinjiang. Book Chapter 6: Water Resources Research in Northwest China, Editor: Yaning Chen. Publisher: Springer, DOI:10.1007/978-94-017-8017-9_6.
专利
7) 王先伟,韩向阳,吴卷书,王军,符盛飞.2025.一种基于 PDM-GAR 模型的混凝土大坝变形预警方法. 专利申请日期:2025年4月16日,专利授权公告日期:2024年9月17日,专利申请号:ZL202500511.
6) 董春雨;江定燊;王先伟;林凯荣;陈晓宏;梁颖珊;刘智勇. 2024. 一种基于空天地结合的河口地区咸潮上溯监测方法及系统. 专利申请日期:2023年10月23日,专利授权公告日期:2024年9月17日,专利号:ZL 2023 1 1575820.9.(已授权)
5)王先伟,王以丹,陈定安.2023. 一种针对无人机近景摄影的裂缝测量误差校正方法及系统. 专利申请号:202311763909.8,专利申请日期:2023年12月21日,专利授权公告日期:2024年1月16日,专利号:(实质审查阶段)
4)陈定安,罗明,王先伟.2022.一种基于对称性分析的建筑物受灾形变检测方法及系统.专利申请日期:2021年10月18日,专利授权公告日期:2022年12月13日,专利号:Zl2021 1 1208634.2.(已授权)
3)陈定安,陈明薇,罗明,王先伟. 2020. 一种基于LiDAR点云的电塔受灾风险评估方法及系统. 专利申请日期:2020年10月9日,专利授权公告日期:2023年1月05日,专利号:Zl2020 1 0963009.8.(已授权)
2)黄华兵,王先伟.2020. 一种城市内涝风险快速评估方法及系统.申请日期:2020年3月9日;专利授权公告日期:2023年5月5日. 专利号:ZL 2020 1 0158029.8. (已授权)
1)王先伟,汪家意,方勇军,郭昱和余琪.2020. 一种水流示踪实时监测系统与测速方法. 专利申请号:CN202010434533.0 ,申请日期:2020年5月20日;公开公告日:2020年9月22日.(未授权).
软件著作权
11) 邹黎威,贺智,王先伟,周承乐,陈一铭.2025. 基于多任务学习的台风灾情位置提取和类别分类系统V1.0. 登记号:2025SR0400480,登记日期:2025/3/6.
10) 奥格,王先伟. 2023. 中小型水库暴雨来水预测与泄洪模拟系统分析软件V1.0. 登记号:2023SR0673989,登记日期:2023/6/15.
9) 宁亚洲,王先伟.2021.台风灾害损失预报与风险评估软件V1.0. 登记号:2021SR2105327,登记日期:2021/11/10.
8)黄华兵,王先伟.2019. 城市内涝地形控制作用分析软件V1.0,登记号:2019SR1139402,登记日期:2019/11/12.
7) 王先伟,何玮杰,王凌志.2019. Floodzone洪灾制图软件V1.0. 登记号:2019SR0393725, 登记日期:2019/4/25.
6) 王先伟,王凌志,何玮杰. 2019. 堤围几何属性自动提取与防洪性能评估软件V1.0. 登记号:2019SR0304272, 登记日期:2019/4/4.
5) 王先伟,管芳,高金顶,蒋为旭. 2017. 基于机载激光高程和影像的海表面高程及海冰厚度计算与分析软件 V1.10, 登记号:2017SR186878,2017/5/18.
4)王先伟,王喜娜,钟焕珍,黄华兵. 2017. 缺潮位数据地区风暴潮设计潮位计算软件V1.0,登记号:2017SR255714,登记日期:2017/6/12.
3)王先伟,王喜娜,钟焕珍,黄华兵. 2017. 风暴潮灾害风险评估系统V1.0,登记号:2017SR255711, 登记日期:2017/6/12.
2) 黄华兵,王先伟,柳林,李秋萍. 2017. 城市内涝应急响应示范系统V1.0. 登记号:2017SR630298, 登记日期:2017/11/16.
1)黄华兵,刘勇,王先伟. 2015. 城市内涝精细化模拟平台软件V1.0,登记号:2015SR055449,2015/3/27.
社会任职
Editorial Board of Hydrosphere for Frontiers in Earth Science and Frontiers in Built Environment
Topic editor for Water
Guest editor of Water for a special issue: Applications of Remote Sensing/GIS in Water Resources and Flooding Risk Managements.
期刊审稿人:Remote Sensing of Environment, Journal of Geophysical Research, Cold Regions Science and Technology, Water Resource Research, Journal of Hydrology,Hydrological Processes, Journal of Hydroinformatics, Quaternary International, Journal of Applied Remote Sensing, Advances in Polar Research, 《遥感学报》、《水利水电技术》、《冰川冻土》、《极地科学》等.
行业协会会员:中国地理学会、遥感学会、水利学会会员; 全球华人地理信息科学协会(CPGIS), 美国地球物理协会 (AGU), 美国地理学会 (AAG),国际冰川协会(IGS), 国际水文协会(IAHS)等.