
Urban Signatures in the Spatial Clustering of Precipitation Extremes over Mainland China

DASHAN WANG,a,b XIANWEI WANG,a LIN LIU,c,d DAGANG WANG,a AND ZHENZHONG ZENG
b

a School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
b School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

c School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
dDepartment of Geography, University of Cincinnati, Cincinnati, Ohio

(Manuscript received 2 March 2020, in final form 16 December 2020)

ABSTRACT: Urban areas demonstrate great influence on precipitation, yet the spatial clustering features of precipitation

are still unclear over urban areas. This study quantitatively examines the spatial clustering of precipitation intensity in 130

urban-affected regions over mainland China during 2008–15 using a high-resolution merged precipitation product. Results

show that the spatial heterogeneity patterns display diverse distribution and vary with precipitation intensity and urban

sizes. Extreme and heavy precipitation has higher spatial heterogeneity than light precipitation over the urban-affected

regions of grade 1 cities, and their meanMoran’s I are 0.49, 0.47, and 0.37 for the intensity percentiles of$95%, 75%–95%,

and ,75%, respectively. The urban signatures in the spatial clustering of precipitation extremes are observed in 37 cities

(28%), mainly occurring in theHaiheRiver basin, the YangtzeRiver basin, and the Pearl River basin. The spatial clustering

patterns of precipitation extremes are affected by the local dominant synoptic conditions, such as the heavy storms

of convective precipitation in Beijing (Moran’s I 5 0.47) and the cold frontal system in the Pearl River delta (Moran’s

I5 0.78), resulting in large regional variability. The role of urban environments for the spatial clustering is more evident

in wetter conditions [e.g., relative humidity (RH) . 75% over Beijing and RH . 85% over the Pearl River delta] and

warmer conditions (T . 258C over Beijing and T . 288C over the Pearl River delta). This study highlights the urban

modification on the spatial clustering of some precipitation extremes, and calls for precautions and adaptation strategies

to mitigate the adverse effect of the highly clustered extreme rainfall events.
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1. Introduction

Heavy precipitation often demonstrates considerably un-

even spatiotemporal characteristics (Dai et al. 2007). The

spatial variance and the intensification of precipitation ex-

tremes have drawn increasing attention due to their crucial

impacts on society and human life (Trenberth et al. 2003;

Ghosh et al. 2012). The highly spatial clustered precipitation

events could exert devastating effects on local areas. For

example, an extreme rainfall occurred in Beijing on 21 July

2012 and brought more than 100mm of precipitation to

nearly 90% of the urban area and 460mm to the storm center

in the Fangshan district, resulting in severe life and economic

loss (Zhang et al. 2013). Advances in the understanding of the

precipitation heterogeneity not only allow for a comprehensive

view of the storm system but also for the flood response and the

adaptation management of hydrological hazards (Sun et al.

2017; Renard 2017).

The spatial heterogeneity of precipitation is evident at a

regional scale. Precipitation variability induced by large-scale

forcing (e.g., monsoon system, typhoon, and El Niño–Southern
Oscillation) has been documented by numerous studies

(Prat and Nelson 2013; Deng et al. 2014). In contrast, the

spatial heterogeneity features of precipitation at the local scale

are less clear (Zhou et al. 2019). Local surface conditions such

as land cover, vegetation, soil texture, and topography play

profound roles on the fluxes of heat, water vapor, momentum,

carbon dioxide, and aerosol, and thus affect the spatial het-

erogeneity of precipitation (Feddema et al. 2005; Pielke et al.

2011). Especially urban areas have substantial contrasts in

temperature, wind speed, and humidity against their rural

surroundings, producing peculiar atmospheric circulations,

and spatial variation of precipitation at a local scale. The

urban heat island (UHI) effect, large land surface roughness,

and high aerosol concentrations are considered as the main

factors affecting precipitation extremes in urban environ-

ments (Han et al. 2014).

There is an ongoing debate on the impact of urban envi-

ronment on precipitation variations at a local scale. Most

observational and modeling research showed that urban

environments play a positive role in affecting precipitation

variety by enhancing moisture convergence, destabilizing the

planetary boundary layer, and favoring vertical updrafts (Huff

and Changnon 1973; Mote et al. 2007; Shepherd et al. 2010;

Wang et al. 2015). Warmer temperatures and the reshaped

surface energy partitioning may eventually form the UHI cir-

culation, which could promote water vapor convergence and

upward transport over urbanized areas, thus triggering local

convective systems. However, several studies have found op-

posite effects that urban surface causes inhibition of convective

available potential energy (CAPE) and reduction of local
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precipitation through absorbingmore solar radiation, decreasing

evapotranspiration, and surfacemoisture (Kaufmann et al. 2007;

Zhang et al. 2009; Georgescu et al. 2012). In addition, urban

aerosols may enhance or inhibit precipitation depending on

the cloud and environmental conditions and aerosol con-

centration levels (Rosenfeld et al. 2008). Meanwhile, urban

environments can play different but significant roles in pre-

cipitation distribution under various synoptic conditions. For

instance, urban areas can initiate local convective activities

and modify the intensity and structure of passing storms

(Niyogi et al. 2011; Ashley et al. 2012), reshape and enhance

frontal-type precipitation (Yu and Liu 2015), and increase

the precipitation intensity during monsoon season (Shastri

et al. 2015). The impact magnitude is closely associated with

the size of urban areas (Miao et al. 2011; Schmid and Niyogi

2013). Nevertheless, our understandings of urban impacts on

precipitation heterogeneity under different synoptic forcings

are still far from clarity (Yang et al. 2019).

Most urban areas have been dramatically extended during

the past 40 years in mainland China (Bloom 2011). At the same

time, precipitation characteristics have experienced significant

changes as well (Zhai et al. 2005; Sun et al. 2017). Particularly,

the difference in precipitation intensity between urban areas

and their surrounding regions has been magnified with the

expansion of urbanization (Ren 2015). Although the urban

effect on precipitation remains a puzzling issue, it is convincing

that the urban signatures, which mean the urban modification

of precipitation patterns and extremes through dynamic and

thermodynamic effects of the urban environment (Li et al.

2011; Yang et al. 2014), could be detected in some typical cities

(Yu and Liu 2015; Zhong et al. 2017; Wang et al. 2018). Highly

clustered precipitation can result in severe hydrological im-

pacts such as flash floods and waterlogging in urban areas,

calling for the need of systematic examination of spatial het-

erogeneity of precipitation over urban-affected regions in

China. As urban areas continue to extend, the risks of extreme

events and rainfall variability may increase. However, analyses

of the spatial clustering features of precipitation over urban

areas are limited mainly due to the coarse resolution of ob-

servations. Accurate measurement of precipitation at the finer

spatiotemporal scale could better represent the characteristics

of precipitation in local areas (Chen et al. 2016). Moreover,

most studies focus on typical rainfall events and in a few

metropolitan areas (e.g., Beijing, Shanghai, and Guangzhou)

over China (Wang et al. 2012). The urban effect on precipi-

tation heterogeneity and clustering for other cities was not

clear, which limits the transferability of their findings (Yang

et al. 2014).

This study aims to provide a holistic investigation of the

urban signatures in the spatial clustering of precipitation ex-

tremes and the underlying mechanisms at an urban scale in

the present-day climate. More precisely, the objectives of this

study are to 1) investigate the spatial heterogeneity features of

precipitation at urban scale using a merged high-resolution

precipitation dataset over mainland China and 2) identify the

urban signatures in the spatial clustering of local precipitation

extremes under different synoptic conditions and reveal the

favorable backgrounds for urban effects.

2. Materials and methods

a. Data

The hourly China Merged Precipitation Analysis (CMPA)

product was used in this study to explore the spatial het-

erogeneity of precipitation from 2008 to 2015 (Fig. 1a). The

CMPA was derived from merging dense rain gauge network

observations (;30 000 automatic weather stations) from the

China Meteorology Administration (CMA) with the Climate

Prediction Center morphing technique (CMORPH) satellite-

based quantitative precipitation estimates (Joyce et al. 2004). It

is in 0.18/hourly resolution and starts from January 2008 to

present over mainland China (Shen et al. 2014). This product

shows good performance over urban areas due to the adjustment

from dense rain gauges (Chen et al. 2016; Wang et al. 2019).

A percentile index was defined using the hourly CMPA data

in order to detect the spatial heterogeneity of precipitation. For

each grid across mainland China, all wet hours ($0.1mmh21)

were divided into three categories: light (,75th percentile),

heavy (75th–95th percentile), and extreme ($95th percentile).

Their mean precipitation intensities weremarked as RI0, RI75,

and RI95, respectively. The percentile-based index is more

suitable and less affected by the scale mismatch for the spatial

comparison of precipitation intensities in different urban areas

(Zhang et al. 2011). In addition, we analyzed the frequency of

extreme rainfall events, defined as the number of hours

when the hourly rainfall is no less than 16mm, and provided a

statistic comparison in terms of ‘‘hour-count’’ information in

regional analysis. The threshold of hourly extreme rainfall was

adopted following the practice of the CMA.

The Japanese 55-year Reanalysis (JRA-55) data (Kobayashi

et al. 2015) on 6-hourly and approximately 0.568 resolution

from 2008 to 2015 were used to derive the clusters of synoptic

conditions over the two selectedmetropolitan areas of the Beijing

and Pearl River delta (see section 2d for detail). The JRA-55 data

show better performance compared to other reanalysis products

over mainland China (Chen et al. 2014). The CMA Land Data

Assimilation System (CLDAS) v2.0 on 0.06258/hourly resolution

during 2008–15 was used to reveal the favorable backgrounds for

urban effects under different synoptic clusters (Shi et al. 2011).

We obtained surface pressure, air temperature at 2 m, and

specific humidity at 2m from the CLDAS data, and calculated

the relative humidity (RH) within a grid using Eq. (1):

RH5
e

e
sat

3 100%5
q3P/0:622/1000

0:61083 exp

�
17:273T

237:31T

�3 100%,

(1)

where q is specific humidity (g g21), P is the surface pressure

(Pa), and T is the air temperature (8C). To match the precipi-

tation data grid, both air temperature and RH were averaged

to a daily scale and then resampled into the 0.18 3 0.18 grid
using the bilinear interpolation method.

The land use/land cover dataset, the extent of main basins,

the administrative boundary, and the center of prefecture-level

cities in mainland China were provided by the Resource and

Environment Data Cloud Platform of the Chinese Academy of
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Sciences. The urban areas in mainland China were obtained

using the land use/land cover data in 2010 (Liu et al. 2005),

which were derived from Landsat TM/ETM1 (Thematic

Mapper and Enhanced Thematic Mapper Plus) and CBERS-1

(China–Brazil Earth Resources Satellite) images. It provides

dominant land cover classifications (farmland, forest, grass-

land, water body, or urban) at 100-m pixels.

b. Urban-affected regions

We investigated the spatial heterogeneity features of

precipitation at urban-affected regions (UARs). The overall

framework for defining UARs and spatial heterogeneity

patterns is provided in Fig. 2a. The land cover data were re-

classified into two classes, urban and nonurban. The percent-

age of urban extent was calculated by dividing the number of

100-m urban pixels with the total number of pixels within each

0.18 3 0.18 grid (Fig. 1b). Schmid and Niyogi (2013) have

demonstrated that a radius of 20 km is the threshold of city size

to modify thunderstorms. Therefore, we tested different per-

centage thresholds of the urban fraction to determine urban

grids by calculating the total number of urban grids over 333

prefecture-level cities in mainland China and the number of

cities with four urban grids ormore (theminimum requirement

for a radius of 20 km). As the threshold increases from 1% to

FIG. 1. (a) The annual mean precipitation (PA; mm) over mainland China derived from the

CMPA product during 2008–15 and the nine main river basins. (b) The spatial distribution of

urban extent and the locations of 130 urban-affected regions with a 50-km buffer (for grade 1

cities) and a 25-km buffer (for grade 2 cities). The 68 3 68 regions of Beijing (398–418N, 115.58–
117.58E) and the PRD (228–248N, 112.58–114.58E) are outlined.
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10%, the number of urban grids (cities) rapidly reduces from

2998 grids (290 cities) to 1288 grids (125 cities). When the

threshold increases to 50%, urban grids (cities) reduce to 202

grids (25 cities) (Fig. 3a). Considering the extent of urban effect

on precipitation and the coverage of study cities, we choose the

10% threshold to define the 0.18 3 0.18 urban grids.

The UARs were defined using the 0.18 3 0.18 urban grids by

three steps. First, the number of spatial consecutive urban grids

was calculated within each prefecture-level city’s administra-

tive boundary. Then all cities were divided into two grades:

grade 1 cities with 16 urban grids or more (ensure a radius

larger than 20 km), and grade 2 cities with urban grids greater

or equal to 4 but less than 16. Exceptionally, five provincial

capitals with three urban grids were also included in grade 2

cities. Next, the UARs were determined by constructing uni-

form circular buffers around the urban center as the spatial

heterogeneity index is dependent on the extent of analysis

area. Previous studies employed different buffers to generate

urban influence regions, such as 100-km buffers in Shastri et al.

(2015) and 25-km buffers used by Luo and Lau (2018). We

tested three circular buffers with a radius of 25, 50 and 100 km.

The proportion of urban grids in the three buffers (or UARs)

are 64.7%, 36.4% and 22.7% for grade 1 cities and 26.9%,

12.4% and 8.9% for grade 2 cities (Fig. 3b). To better compare

FIG. 2. Overview of section 2: (a) framework for defining urban-affected regions and the spatial heterogeneity

patterns and (b) flowchart of the synoptic background classification.

FIG. 3. (a) Estimation of the number of urban grids (bars; left y axis) and the number of cities with four urban

grids or more (line; right y axis) using different thresholds of urban extent for defining urban grids. (b) The pro-

portion of urban grids to the total grids over the two-gradeUARs using three sizes of buffer radius. Error bars show

the 95% confidence intervals of the proportion.
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the spatial heterogeneity under similar proportion of urban

grids and nonurban grids, the UARs were constructed by the

50- and 25-kmbuffers around the urban center for cities in grade 1

and grade 2, respectively. Those grade 2 cities that are enclosed by

the 50-km circular buffers of neighboring grade 1 cities were ex-

cluded in the further analysis (e.g., Fig. S1 in the online supple-

mentalmaterial). Finally, total 30UARs in grade 1 and 100UARs

in grade 2 were identified in mainland China (Fig. 1b).

We further analyzed the regional variations for the spatial

heterogeneity patterns of precipitation intensity at UARs over

the nine main river basins in mainland China (Fig. 1a), to min-

imize the difference of the topography, climate pattern, and

precipitation characteristics in each subregion (Miao et al. 2016).

c. Spatial heterogeneity pattern

The Moran’s I index, which is a common method to char-

acter spatial autocorrelation and reveal the structure of re-

gional variables (Renard 2017), was adopted to quantitatively

investigate the spatial heterogeneity of precipitation in UARs.

First, the global Moran’s I (Moran 1950) value was employed

to quantify the level of spatial heterogeneity for precipitation

indices in each UAR, and was calculated in Eq. (2):
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ij

�
n

i51
�
n

j51

W
ij
R

i
2R
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2RÞ

�
n

i51

R
i
2R

� �2 , (2)

where n is the number of grids indexed by i and j; Ri and Rj are

the variables for grid i and j, respectively; R is the spatial av-

erage of variables; and Wij is the spatial weight between grid i

and j (1 or 0) according to their spatial adjacency. The global

Moran’s I value compares the difference between each pair of

neighbors to the mean difference between all features in the

study area, i.e., two categories of UARs defined in this study. It

varies between 21 and 1. A Z score larger than 1.96 or less

than 21.96 indicates that the spatial heterogeneity was statis-

tically significant at the 95% confidence level. If the average

difference between neighboring features was less (more) than

that among all features, the Moran’s I value would be positive

(negative) and indicated a spatial clustered (dispersed) pattern.

The global Moran’s I value close to 0 and an absolute value of Z

score no larger than 1.96 indicated a random distribution.

The localMoran’s I referred to as the local indicators of spatial

association (LISA; Anselin 1995) was applied to identify the key

clusters of precipitation intensity in this study. The HH (LL)

described a high (low) value cluster where nearby grids have

similarly high (low) values, and was computed as the difference

with its neighboring grids was smaller than that with all grids.

The HL (LH) aberrant point represented a high (low) value

surrounded by low (high) neighboring values and was defined as

the differencewith its neighboring gridswas larger than thatwith

all grids. Figure 4 illustrates an example for the spatial distribu-

tion of RI95, as well as the corresponding HH (LL) clusters and

the aberrant points (HL and LH) over the UAR of Beijing.

Finally, the spatial distribution of precipitation features

within each UARs were defined as one of the following

four spatial heterogeneity patterns: HU, LU, MIX, and NS

(Fig. 2a). These four patterns were distinguished based on the

value and significance of the global Moran’s I and the mean

urban extent over HH and LL grids. If the Moran’s I was sig-

nificantly positive (Moran’s I . 0, Z . 1.96; spatial clustered),

then the mean urban extent over the HH grids, LL grids, and

the whole UAR was computed (marked as UH, UL, and UR,

respectively). UARs with UH . UR . UL (UH , UR , UL)

relationship represented that HH (LL) grids were clustered in

urban areas and was categorized as HU (LU); others, i.e., both

UH and UL are higher (or lower) than UR, were defined as

MIX, which demonstrated that precipitation in this region was

unevenly distributed but the urban signature was not evident.

Whereas when the Moran’s I was not significant (jZj # 1.96),

which indicated a random spatial distribution, this UAR was

categorized as NS. The HU demonstrated the urban signatures

in the spatial clustering of precipitation intensity (e.g., RI95

clustered over urban areas in the Beijing UAR; Fig. 4) and was

the primary target analyzed in this study.

d. Classification of synoptic background

To analyze and understand the urban signatures in precipi-

tation extremes under different synoptic conditions, here we

FIG. 4. The spatial distribution of (a) hourly precipitation of RI95 (global Moran’s I 5 0.65; Z . 1.96) and (b) the

spatial heterogeneity pattern determined by local Moran’s I (HU) in the urban-affected region of Beijing.
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take two specific areas of Beijing in the Haihe River basin and

the Pearl River delta (PRD) in the Pearl River basin for further

study. Beijing is one of the largest megacities in the world, and

the PRD is known as the largest metropolitan agglomerations

and densely populated areas. The urban signatures on the

spatial clustering of precipitation are prominent in both areas.

Details are presented in the section 3a. The Beijing metro-

politan areas consist of mountainous areas in the northern and

western parts and plain in the southern and eastern parts. The

PRD is seated in the southern coast of China and contains the

main cities of Guangzhou, Foshan, Dongguan, Shenzhen, and

Zhongshan. Over the past decades, both Beijing and PRD have

undergone rapid urban expansion and experienced extreme pre-

cipitation events and severe urban floods. Two 68 3 68 regions
which centers on the metropolitan areas of Beijing and PRD

were defined as the predictor regions (Fig. 1b).

Considering the impacts of large-scale synoptic conditions on

precipitation, the method of Shastri et al. (2015) was adopted to

classify the study periods (days) into various clusters that

represent different regional synoptic backgrounds (Fig. 2b).

Six key meteorological variables were used to describe syn-

optic backgrounds, namely, air temperature, atmospheric

pressure, relative humidity, vertical velocity, as well as the

500-hPa U-wind field and V-wind field derived from the JRA-55

reanalysis. Instead of using the raw 6-h data, the dailymean values

of the six variables were used in order to mitigate the effect

of diurnal variation. The processing involves three steps,

normalization of variables, dimensionality reduction, and

classification of synoptic backgrounds. We use Beijing as an

example to illustrate the process. The predictor region consists

of 156 (13 3 12) JRA-55 grids. First, each of the six meteoro-

logical predictors was normalized with the standardization

method (Shastri et al. 2017) to eliminate the scale mismatch.

Six normalized variables at 156 grids made a sum of 936 (63 156)

dimensions as predictors, which form a 29223 936 matrix with

their 2922 daily values during 2008–15. Using all dimensions

of the predictors to classify the clusters would pose difficulty of

multidimensionality and multicollinearity, so the second step

was to apply the principal component analysis (PCA) technique

to reduce the high dimensions. The reduced 20 (18) principal

components for Beijing (PRD) could represent more than 95%

of the variability of high-dimensioned predictors. Next, the un-

supervised classification method of k-means clustering was car-

ried out to partition the principal component vectors (e.g., the

2922 3 20 matrix for Beijing) into k clusters. This method was

executed 20 times for each k value from 2 to 8 for the predictor

region. The optimum numbers of k values were then identified

as 5 and 6 corresponding to the highest value ofDunn’s index for

Beijing and PRD, respectively. Finally, we classified each day

during the study period into one of the 5 (6) clusters for Beijing

(PRD) based on the mode of cluster type in that day among the

20 times execution of the optimum k value.

All clusters and their mean conditions of the synoptic

background in each cluster type of Beijing and PRD are pre-

sented in Figs. S2 and S3. Each cluster represents one type of

synoptic condition, which is closely related to one dominant

precipitation regime. For example, in the PRD (Fig. S3), pre-

cipitation in cluster 3 mainly occurs from mid-March to early

May and is associated with the cold frontal system. Cluster 4

spans from mid-May to June when the southwestern monsoon

dominates. Cluster 5 is coincident with tropical convective

processes, with the observed high temperature and weak syn-

optic background. Cluster 6 represents the anticlockwise

southeasterly wind of tropical cyclone events. Distinct differ-

ences could be observed between these types for the six vari-

ables, showing the ability of this approach in classifying and

understanding the regional synoptic backgrounds (Singh et al.

2016; Gu et al. 2019). As the synoptic background remains

fixed in each cluster type, the difference of precipitation het-

erogeneity features between the metropolitan areas could be

attributed to the urban effects and other local factors (Shastri

et al. 2015). In other words, the urban signature in the spatial

clustering of precipitation extremes could be illustrated by

such a difference.

3. Results and discussions

a. Regional variations for the spatial heterogeneity

patterns of precipitation

1) SPATIAL HETEROGENEITY FEATURES OF

PRECIPITATION

Precipitation intensity displays evident geographical het-

erogeneity across mainland China (Figs. 5a–c). Eastern and

southern China generally have larger precipitation intensity in

the three percentiles. For example, it increases from less than

5mmh21 in the western inland to more than 20mmh21 in the

eastern coast for the RI95 (Fig. 5c). The precipitation intensity

in southern China and Bohai Rim areas is much higher than in

other regions. Some locations in the inland areas showed much

larger intensities than their neighboring areas primarily due to

the orographic effect or lake/reservoir effect. The abnormal

high values over the Tibetan Plateau are likely due to the

systematic anomalies of passive microwave (PMW) estimates

over inland water bodies (Tang et al. 2016).

The spatial heterogeneity patterns (HU, LU, MIX, and NS;

Fig. 2a) of precipitation intensity at the urban scale present

diverse distribution (Figs. 5d–f). The HU represents the urban

signature in promoting the clustering of precipitation intensity

and is dominant across mainland China except for cities on the

east coast, in the Huaihe River basin and in the inland areas

of northwest China and the Tibetan Plateau. The HU takes

up 40%, 34%, and 43% among the four patterns for the three

percentiles of RI0, RI75, and RI95 in the grade 1 cities, be-

ing 35%, 38%, and 24% in the grade 2 cities, respectively

(Figs. 5g,h). The LU represents that the high values of pre-

cipitation intensity are clustered in rural areas and is the second

dominant pattern for grade 1 cities, accounting for 30%, 33%,

and 30% for RI0, RI75, and RI95, but occupies very low pro-

portions of 15%, 9%, and 24% for grade 2 cities, respectively.

The LU regions are mainly located in the eastern coastal cities,

where the monsoon or plum rainfall controls the annual pre-

cipitation (Figs. 5d–f). The MIX represents those cases that

urban signatures in the spatial clustering of precipitation in-

tensity are not prominent, and they mainly occur in the grade 1

cities with a proportion around 30% (Fig. 5g). The NS means
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that precipitation intensity is in a random spatial distribution

within the UAR, and primarily takes place in the grade 2 cities

(accounts for 29%–38%; Fig. 5h). These indicate that the im-

pact of the urban extent on the clustering of precipitation is

associated with urban sizes. The metropolitan areas in the

grade 1 cities have a larger impact on the clustering of pre-

cipitation extremes than the smaller urban areas in grade 2

cities, where there are higher NS proportions for precipitation

intensity.

Figure 5i provides the statistic values of theMoran’s I for the

two sizes of urban areas. The values of Moran’s I are larger in

the grade 1 cities (with mean values of 0.37, 0.47 and 0.49 for

the three percentiles, respectively) than those in the grade 2

cities (0.34, 0.38, and 0.37), and for heavy and extreme pre-

cipitation. This suggests that heavy and extreme precipitation

tends to have more significant spatial clustering, especially

over large urban areas.

The spatial heterogeneity of the frequency for light

(,4mmh21), heavy (4–16mmh21), and extreme ($16mmh21)

precipitation at urban scale were also analyzed (Fig. 6). In

contrast to precipitation intensity, the frequency of light pre-

cipitation shows higher spatial heterogeneity (with mean

Moran’s I values of 0.56 and 0.38 for the two grades, respec-

tively) than that of extreme precipitation (0.41 and 0.32) over

UARs. LU is the dominant pattern for light precipitation

(accounts for 47% in grade 1 cities and 36% in grade 2 cities),

showing the signature of urban extents to the inhibition of

precipitation frequency. The urban surface could disturb the

radiation budget in the urban canopy, resulting in the pronounced

reduction in latent heat flux, RH and evapotranspiration,

and increases in sensible heat flux against their surroundings

(Zhang et al. 2014). These processes could lead to negative

effects on the initiation and development of precipitation sys-

tems. The fewer rain hours over urban areas could be partially

explained by the above processes. MIX and NS show a higher

proportion (added up to 53%–64%) in the grade 2 cities. HU is

only prominent for the extreme precipitation frequency among

grade 1 cities that are mainly located in the Haihe basin and

FIG. 5. The spatial distributions of (a)–(c) mean hourly precipitation (mm h21) and (d)–(f) four heterogeneity patterns

(HU, LU,MIX, NS) for the three percentiles (RI0: 0–75th, RI75: 75–95th, RI95: 95–100th) from 2008 to 2015 overmainlandChina, (g),(h)

the proportions of urban-affected regions for the four spatial heterogeneity patterns, and (i) the boxplots of the Moran’s I value. The box

represents the first and third quartiles, the line (dot) within the box represents the median (mean) value, and the whiskers represent

1.5 times the interquartile.
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Yangtze River basin (Fig. 6f). In summary, urban signatures

are more evident in the inhibition of light precipitation fre-

quency and the spatial clustering of extreme precipitation

intensity.

2) REGIONAL VARIATIONS

The urban extent may not be the dominant factor in the

spatial heterogeneity of precipitation over the UARs in

mainland China, but it is explicit from the results that the

spatial clustering of precipitation varies distinctly in different

regions, especially for precipitation extremes. For the extreme

precipitation (RI95), HU and NS patterns share larger pro-

portions (both are 28%) than the others (19% for LU and

24% for MIX) in the 130 UARs (Table 1). The HU pattern is

dominant in the Yangtze River basin (48%), the Haihe River

basin (44%), and the Pearl River basin (36%), which indicates

that the local influence of urbanization mainly aggregates the

spatial clustering of precipitation extremes. The LU and NS

dominate in southeast China (56% and 33%), the Huaihe

River basin (32% and 42%) and the Yellow River basin (28%

and 33%), while NS occupies 100% in the southwest basin

and 50% in the continental basins, suggesting that the local

environmental setting and synoptic conditions determine the

spatial clustering of precipitation extremes and the effect of

urbanization on spatial clustering is negligible or even disperse

the precipitation extremes. The MIX pattern is dominant

(32%) in Songhua andLiaoheRiver basins, where each pattern

shares a similar proportion.

In summary, precipitation heterogeneity at an urban scale is

closely linked to climate features, topography relief, coastal

boundaries, and urban development (Zhou et al. 2019). The

regional variation for the spatial heterogeneity patterns of

precipitation may be largely determined by the local climate

setting and topography. For instance, the urban signatures in

the spatial clustering of extreme precipitation intensity are not

prominent over the HuaiheRiver basin (3), southeast China (7),

FIG. 6. The spatial distributions of (a)–(c) frequency (%) and (d)–(f) four heterogeneity patterns (HU, LU, MIX, NS) for the three

indices (RF0: 0.1–4mmh21, RF4: 4–16mmh21, RF16: $16mmh21) from 2008 to 2015 over mainland China; the frequency indices are

computed as the ratio of the number of hours in the three thresholds to the total hours during the study period. (g),(h) The proportions of

urban-affected regions for the four spatial heterogeneity patterns, and (i) the boxplots of the Moran’s I value. The box represents the first

and third quartiles, the line (dot) within the box represents the median (mean) value, and the whiskers represent 1.5 times the

interquartile.
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and the continental basins (9) (Table 1 and Fig. 5f), suggesting

the impact from large-scale circulations (e.g., monsoon and

tropical cyclones) on precipitation extremes is greater than the

local influence in the areas of the inner continent, plain terrain or

coastal regions (Fig. S4). The Yangtze River delta (YRD) area in

the lower reaches ofYangtzeRiver basin has a low and flat terrain

in the city cores and downwind regions, and mountainous terrain

(Dabie Mountains and Huangshan Mountains) distributes in the

upwind direction (Fig. S4). The combination of large-scale forcing

such as the plum rainfall, land–sea circulation and the regional

topography are considered as the dominant factors affecting the

precipitation clustering in this region (Fu et al. 2019). Although

there are clustered patterns of precipitation extremes, the ur-

ban signatures are not evident in the YRD (Figs. 5d–f). In the

following session, we present two typical regions of Beijing and

PRD, where urban areas impress a significant signature on the

spatial clustering of the precipitation extremes.

b. Favorable synoptic conditions of urban signatures in the
spatial clustering of precipitation extremes

1) TWO FAVORABLE SYNOPTIC CONDITIONS FOR

URBAN EFFECTS

Previous modeling studies demonstrated that the role of

urban areas on the heterogeneity of precipitation varies with

geographical regions and synoptic conditions, as we summa-

rized in Table 2, showing the modulating role of synoptic

backgrounds for the urban effects on individual precipitation

event. Here we put forward a hypothesis that urban signatures

in the spatial clustering of precipitation vary with different

synoptic background and the related precipitation types. The

two metropolitan areas of Beijing and the PRD are selected

as the regional analysis to investigate the urban signatures

in precipitation extremes under different synoptic conditions.

The metropolitan area is defined as the continuous urban grids

with a proportion of urban extent . 10% and the suburban

areas are defined as the surrounding grids within a three-grid

distance. Those suburban grids having an elevation of higher

than 800-m elevation or crossing the coastline are excluded to

avoid the effect of other local effects such as topography and

land–sea interaction (Figs. 7a and 8a ).

In the Beijing domain, the climate is influenced by the East

Asia summer monsoon (EASM) and the Siberian Express,

characterized as hot and wet summers spanning from June to

August, and cold and dry winters (Fig. S2). The two centers

of annual mean precipitation over the Beijing city are in the

urban core and the climatic downwind region (Fig. 7c). The

significant HH clusters of RI95 are situated in the urban core

for convective precipitation (Fig. 7e), while theHH clusters are

primarily located in the urban downwind and secondarily in

the urban core for monsoon precipitation, which is generally

consistent with the total precipitation (Fig. 7f). Themagnitudes

of the Moran’s I of RI95 for convective precipitation are the

largest (0.47), followed by monsoon precipitation (0.41), indi-

cating that the spatial clustering pattern of precipitation ex-

tremes over Beijing may be largely affected by these two types

(Table 3). Moreover, convective precipitation shows an evident

contrast between urban and suburban, with 1.0mmh21 higher of

mean RI95 (Fig. 7h) and 64%more of extreme rainy hours over

urban areas (Fig. 7g). The high temperature over urbanized

areas and the relatively weak synoptic background suggest a

favorable condition for the UHI impacts and convective pro-

cesses (Fig. S2). Monsoon precipitation controls the spatial

pattern of annual precipitation and contributes 50.9% of the

annual precipitation and more than 80% to the extreme pre-

cipitationwith only 14.3%of total days (Fig. 7f andTable 3). The

urban downwind had larger precipitation than the urban area,

while the urban area had larger values than the upwind and the

suburb (Fig. 7f and Table 3). The transitional topography and

the moisture supply from the Miyun reservoir which is located

near the northeast boundary of Beijing, may contribute to the

initiation and intensification of storms over the windward slope

region, thus increasing the Beijing downwind precipitation

(Yang et al. 2014). The cold frontal system in spring and autumn

brings about 36% of the total precipitation each year while only

contributes about 10% to the extremes each year (Table 2).

In the PRD, precipitation is controlled by different synoptic

conditions in each season, such as the first rainy season from

April to June and the second rainy season from July to

September (Fig. S3). The annual precipitation is greatest in the

southwest hilly coast and the northeast uplift transition area

(Fig. 8c). The humid cold frontal precipitation mainly occurs

from mid-March to early May and is a unique type in south

China. Extreme precipitation is spatially clustered over urban

areas and the value of the Moran’s I of RI95 for cold frontal

precipitation is as high as 0.78 (Table 4). Urban areas have 16%

TABLE 1. City count and proportions of each heterogeneity pattern (RI95) in the nine main river basins of mainland China. Proportions

higher than the national mean value are highlighted with bold font.

Total HU LU MIX NS

1. Songhua and Liaohe River basins 19 4 (21%) 4 (21%) 6 (32%) 5 (26%)

2. Haihe River basin 18 8 (44%) 2 (11%) 4 (22%) 4 (22%)

3. Huaihe River basin 19 2 (11%) 6 (32%) 3 (16%) 8 (42%)

4. Yellow River basin 18 5 (28%) 5 (28%) 2 (11%) 6 (33%)
5. Yangtze River basin 27 13 (48%) 1 (4%) 9 (33%) 4 (15%)

6. Pearl River basin 11 4 (36%) 1 (9%) 4 (36%) 2 (18%)

7. Southeast basins 9 1 (11%) 5 (56%) 0 (0%) 3 (33%)

8. Southwest basins 1 0 (0%) 0 (0%) 0 (0%) 1 (100%)
9. Continental basins 8 0 (0%) 1 (13%) 3 (38%) 4 (50%)

Total (national) 130 37 (28%) 25 (19%) 31 (24%) 37 (28%)
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fewer rainy hours, 36%more extreme rainy hours, and 2.5mmh21

higher rainfall intensities than the surrounding suburban areas

(Figs. 8h,i). Southwesterly monsoon precipitation spans from

May to June. It accounts for 17.5% of the total days while

contributes 39% (42%) of the annual mean precipitation and

47% (54%) of extremes in the urban (suburban) areas (Table 4).

In contrast, the convection precipitation has more annual ex-

treme precipitation (33.1 versus 23.2mm grid21), more ex-

treme precipitation hours (24% more) and higher intensities

(14.3 versus 12.8mmh21) in the urban area than the suburb

(Figs. 8h,i and Table 4). The typhoon events represent anti-

clockwise wind, and the spatial pattern of typhoon-related

precipitation is less correlated with the urban extent (Fig. 8g).

The grids in significant HH clusters for cold frontal and con-

vection systemsmatch well with the urban center of Guangzhou,

Dongguan, and Shenzhen, indicating that the urban areas in

the PRD mainly affect the spatial clustering of precipitation

extremes for these two types. We further investigate how the

synoptic background influences the urban signature in spatial

clustering of precipitation extremes.

2) INFLUENCES OF AIR TEMPERATURE AND RH

The statistical analysis examines the hypothesis that the

urban signatures in spatial clustering of precipitation extremes

FIG. 7. Spatial distribution of (a) urban extent (%), (b) elevation (m), (c) annual mean precipitation (mm), and (d)–(f) the mean

intensities (mm h21) of RI95 for cold frontal precipitation (CF), convective precipitation (CV), and summer monsoon precipitation (MS)

over the Beijing domain. (g) Precipitation ratio for the frequency of wets (.0.1mmh21) and extremes ($16mmh21) between urban

(U) and suburban (S) areas, and (h) the boxplot of precipitation intensity ($95th percentile) over urban and suburban areas among the

three cluster types. The urban grids and the surrounding suburban grids are outlined, and the suburban region is divided into the cli-

matological upwind (southwest) and downwind (northeast) areas according to the climatic wind direction. Grids in the significant HH

cluster (with a 95% confidence level) are marked with 1 symbols in (c)–(f).

MARCH 2021 WANG ET AL . 649



vary with different synoptic background and the related pre-

cipitation types. We further investigate the favorable synoptic

conditions of urban effects on spatial clustering of precipi-

tation extremes by examining the relationship of the areal

mean temperature and RH against the heterogeneity patterns

of extreme precipitation at a daily scale in the Beijing and PRD

areas (Figs. 9 and 10 ). The extreme days were defined as days

that at least five grids have hourly precipitation records ex-

ceeds their 95th percentile threshold during the study period.

The spatial distribution of the accumulated precipitation in

each extreme day was selected for the LISA analysis and was

characterized into HU days, LU days, or MIX days, and the

corresponding areal mean temperature and RH in each ex-

treme day were identified using the CLDAS data.

In Beijing, HU days take up 32%, 54%, and 53% of the

extreme days under the three synoptic conditions (Figs. 9a–c).

Generally, HU days and LU days have similar probability

distribution functions with temperature for extreme precipi-

tation in the frontal and monsoon systems (Figs. 9d,f). In

contrast, HU has a higher probability of around 258–278C and

in humid conditions (RH . 75%) than LU for the convection

extreme precipitation, and LU has a much higher probability

than HU as RH , 70% (Figs. 9e,h).

In the PRD, it has more extreme days, higher temperature,

and higher RH than Beijing. HU (LU) holds 51% (42%),

41% (54%), and 53% (43%) of the extreme days under the

three synoptic conditions of cold front, warm monsoon and

convective precipitation (Fig. 10). HU tends to occur in mod-

erate temperature (between 208 and 248C) and highRH(.85%)

for the humid cold frontal systems (Figs. 10d,g). Besides, HU

has a higher probability above 288C and in lower RH ranges

(75%–85%) than LU for the convection extreme precipitation

FIG. 8. As in Fig. 7, but for the cold frontal precipitation (CF), monsoon precipitation (MS), convective precipitation (CV), and the

typhoon precipitation (TF) over the PRD domain.
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(Figs. 10f,i). Both HU and LU demonstrate a similar proba-

bility pattern against temperature and RH for the monsoon

precipitation extremes (Figs. 10e,h).

Even though differences exist in the specific ranges for dif-

ferent regions, the results suggest that precipitation extremes

are likely to be clustered over urban areas (HU) within two

T–RH ranges. One is in high temperature and lower RH

ranges (Figs. 9b and 10c), and another is in moderate tem-

perature and high RH ranges (Fig. 10a). In other words, urban

effect on precipitation extremes may become more prominent

in warmer (benefit for local convention) or wetter (humid

frontal systems) conditions.

3) INTEGRATED ANALYSIS

Though no global picture emerges for the urban signatures

of precipitation extremes among all events and synoptic back-

grounds, it is observed that the urban signatures is more prom-

inent in warmer or wetter conditions at an event scale (Figs. 9

and 10). The urban effects on precipitation heterogeneity can

be categorized in three conditions when extreme precipitation

events occur (Fig. 11): phase I in moderate temperature and

highRH range, phase II in high temperature andmoderate RH

range, and phase III in high temperature and lowRH range. At

an event scale, both thermodynamic and dynamic factors could

affect the moisture capacity, redistribute the moisture in a storm,

and trigger ascendingmotion, resulting in changes of precipitation

structures and intensities (Drobinski et al. 2016). The different

role of urban environment in modulating storm dynamics and

precipitation efficiency under different synoptic backgrounds

could explain the spatial clustering pattern of precipitation

extremes over urban-affected areas in different condition.

In phase I, the urban modification on precipitation pattern

is remarkable under conditions with sufficient water supply,

which mainly occurs in April andMay in south China (Su et al.

2019), e.g., in the no water-limited cold frontal system over the

PRD region (Figs. 8d and 10g). Urban surface features can

provide favorable conditions for deep convections by modify-

ing the level of free convection (LFC) and boundary layer

height. Higher temperature over urban areas could hold more

water vapor, promote greater moisture convergence and allow

the air rise sooner to the LFC than colder areas, which finally

enhance the intensity and total amount of heavy rainfall events

over urban areas (Trenberth et al. 2003). Furthermore, the

urban roughness effects could slow the cold front movement,

thus delaying the full development of the precipitation system

(Huang et al. 2019). In the humid frontal system, urban forcing

may not be a constraining factor for the initiation and devel-

opment of deep convection, but urban effects do influence the

timing and location of precipitation events and benefit the

aggregation of spatial heterogeneity.

In phase II, the urban effect is relatively weak in a strong

synoptic background, which is associated with the large-scale

monsoon rainfall and typhoon-related rainfall that affect most

areas of China. The large-scale synoptic system may weaken

the local wind convergence and strengthen the moisture ad-

vection, resulting in a weaker local UHI circulation, such as

the typhoon precipitation (Fig. 8g). Besides, multiple dynamic

processes like frontal lifting, orographic lifting, and sea–land

breeze could provide the energy to overcome the convective

inhibition (CIN). It is evident that the windward side of

mountainous areas and the urban areas are the clustered re-

gions of precipitation extremes in frontal systems (e.g., the

TABLE 4. As in Table 3, but for the PRD domain.

Humid winter Dry winter Cold front Monsoon Convection Typhoon

Proportion of total days (%) 10.7% 18.0% 29.6% 17.5% 20.1% 4.1%

Proportion of total precipitation (%) 5.6% 4.8% 17.1% 40.8% 14.0% 17.7%

Annual mean precipitation (mm grid21) Urban 91.2 74.3 288.6 655.4 245.0 322.0

Suburban 100.0 90.2 303.9 747.9 242.8 296.9

Annual mean extreme precipitation

(mm grid21)

Urban 4.1 — 57.9 133.9 33.1 55.7

Suburban 3.7 — 40.5 137.8 23.2 45.9

Moran’s I of RI95 0.49 — 0.78 0.51 0.54 0.61

TABLE 3. Proportions of precipitation and theMoran’s I values of extreme indices for each cluster type over the Beijing domain. Extreme

precipitation is defined as hourly rainfall with an intensity exceeding 16mmh21.

Humid winter Dry winter Cold front Convection Monsoon

Proportion of total days (%) 26.6% 15.0% 18.6% 25.5% 14.3%

Proportion of total precipitation (%) 2.1% 0.8% 36.2% 10.0% 50.9%

Annual mean precipitation (mm grid21) Urban 11.8 3.6 203.3 59.1 291.7

Suburban 12.0 4.8 202.9 54.1 281.3

Upwind 11.3 4.9 204.0 53.9 267.9

Downwind 12.8 4.7 201.7 54.3 294.7

Annual mean extreme precipitation

(mm grid21)

Urban — — 7.8 7.1 60.4

Suburban — — 7.9 4.7 59.1

Upwind — — 9.3 5.1 54.3

Downwind — — 6.4 4.4 63.9

Moran’s I of RI95 — — 0.19 0.47 0.41
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monsoon precipitation of Beijing and PRD, Figs. 7f and 8e). In

these cases, the urban-induced processes could be of less im-

portance, and the differences in the frequency/intensity of

extreme precipitation over the urban and suburban areas are

not significant (Figs. 7g,h and 8h,i).

In phase III, the urban effect becomes dominant by promoting

moisture convergence and vertical motions when the synoptic

forcing is relatively weak and the air temperature is high (Figs. 7e

and 8f). The surface temperature peaks in the afternoon due to

the solar radiation and surface thermal radiation; the unstable

energy could last to the evening. The UHI and increased surface

roughness favor local moisture convergence in the lower atmo-

sphere, the urban-induced sensible heat flux and thermodynamic

turbulent flow could promote vertical motions and trigger local

convective systems (Han et al. 2014). As a result, more frequent

and intense extreme precipitation occurred over the urban areas

during summer (e.g., convective precipitation of Beijing and

PRD, Figs. 7e and 8f), especially in the afternoon.

The effects of urbanization on precipitation pattern and

extremes have been tested based on numerical modeling in

many case studies, but synthesized information to reveal the

urban signatures inmodifying the spatial heterogeneity pattern

of precipitation extremes under different synoptic conditions

is scare. In this study, results of 14 modeling case studies over

several metropolitans in mainland China were systematically

reviewed. The description of the synoptic condition of each

event as well as the heterogeneity change of precipitation ex-

tremes after urbanization were summarized in Table 2. The

corresponding daily mean temperature andRH of these events

were also calculated and showed in the schematic drawing of

Fig. 11. The T–RH ranges of the three phases were roughly

summarized from the analyses in Beijing and the PRD (Figs. 9

and 10). Generally, the related urban signatures in the spatial

clustering of precipitation extremes are consistent with the

results of previous modeling studies (Fig. 11 and Table 2).

Urban areas play a crucial role in the spatial clustering of

precipitation extremes (in frequency, intensity, and amount)

for the humid frontal systems (phase I; Zhong and Yang 2015;

Huang et al. 2019; Liu et al. 2019) and the convective cloud

system with relative weak large-scale synoptic forcing (phase

III; Guo et al. 2006; Miao et al. 2011; Zhang et al. 2017; Zhong

et al. 2017). In a strong synoptic background (phase II), the

combined effects of multiple dynamic factors on precipitation

are complex and depend on specific condition in each event,

resulting in aggregation (Yu and Liu 2015; Xing et al. 2019),

inhibition (Zhong et al. 2017; Guo et al. 2019), or very weak

FIG. 9. (a)–(c) Scatterplot for HU (red), LU (blue), and MIX (gray) extreme days with the corresponding areal mean temperature and

relative humidity for the three cluster types over the Beijing domain; the proportions of total HU and LU days in each cluster are listed.

(d)–(i) Probability distribution function of HU days and LU days against temperature and relative humidity.
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(Wan et al. 2013; Wang et al. 2015) effects of urbanization on

the precipitation clustering. Furthermore, the inconsistent re-

sults in different modeling studies on the same event (e.g., Yu

and Liu 2015; Wang et al. 2015) imply the large uncertainty in

simulating the effects of urbanization on heavy precipitation by

different approaches and model configurations. Overall, our

understanding of urban effects on the spatial clustering of

precipitation events is far from clarity, especially for heavy

events under strong synoptic forcing.

4. Summary

This study presents the urban signatures in the spatial het-

erogeneity patterns of precipitation intensity over 130 cities in

mainland China using a merged high-resolution precipitation

dataset. The roles of urban extent and underlying mechanisms

on the observed spatial clustering of precipitation extremes

are further investigated and discussed in the Beijing and PRD

domains under different synoptic conditions. The primary con-

clusions are summarized below.

1) The spatial clustering patterns of precipitation over the UARs

are not universal across mainland China. Only 37 cities (28%)

are observed with significant urban signatures on the spatial

clustering of precipitation extremes. The impact of the urban

extent on the clustering of precipitation is associated with

urban sizes (The HU takes up 43% RI95 in the grade 1

cities, but only 24% in the grade 2 cities). Extreme and heavy

precipitation has higher spatial clustering than light precip-

itation (mean Moran’s I5 0.49, 0.47, and 0.37, respectively).

2) The spatial clustering of precipitation varies distinctly in

different geographic regions, which is largely determined by

the local climate setting and topography. The Haihe River

basin, theYangtzeRiver basin and the Pearl River basin are

typical regions with urban signatures (HU dominates with

the proportion of 44%, 48%, and 36%, respectively).

3) The urban signature on the spatial clustering of precipitation

extremes varies with synoptic conditions and their related

precipitation types, and is predominant for local convective

precipitation in Beijing (Moran’s I 5 0.47) and for the cold

frontal precipitation in the PRD area (Moran’s I 5 0.78).

4) Precipitation efficiency and regional dynamics are the

strong drivers for the spatial clustering of precipitation

extremes, and the urban effect tends to be more prominent

in warmer (.258C over Beijing and .288C over the PRD)

or wetter (.75% over Beijing and .85% over the PRD)

conditions.

Our study highlights the urban signatures in forming the

spatial clustering of some precipitation extremes. However,

FIG. 10. As in Fig. 9, but for the extreme days over the PRD domain.
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uncertainties and limitations may exist due to the short record

length and the unsupervised classificationmethod in classifying

synoptic backgrounds. Besides, mechanisms of the urban ef-

fects in the spatial clustering of precipitation extremes have not

been fully understood. Further observation and modeling

studies on more events under different synoptic conditions and

impact factors are needed to reveal the role of urban areas on

the spatial clustering of precipitation and the related mecha-

nisms, such as accurate divisions of precipitation types, land

cover and land use change, anthropogenic heat, anthropogenic

aerosol emission, and so on. That is what we are currently

working on but beyond the scope of this manuscript.

This work is a successful attempt in linking the spatial het-

erogeneity patterns of precipitation extremes and urban effects

in mainland China. This study presents the spatial heterogeneity

features of precipitation at the urban scale and their regional

variations, and investigates the favorable synoptic conditions

and probably temperature and relative humidity ranges of urban

effects on individual events. The observed clustered extreme

rainfall over urbanized areas is likely to cause hydrologic

hazards and stress water availability. Cities may suffer from

increasingly clustered precipitation extremes in the future due

to the combined effects of climate change and urbanization.

Therefore, it is strongly encouraged to take precautions and

adaptation strategies to mitigate the adverse effect of the highly

concentrated extreme rainfall events, particularly in the urban

areas located in the Haihe River basin, the Yangtze River basin,

and the Pearl River basin of China.
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