刘蓉,中山大学地理科学与规划学院副教授,硕士生导师。主要研究方向为高光谱遥感图像智能化解译、进化计算、深度学习。已发表学术论文二十余篇,1篇论文入选ESI高被引论文,获批国家发明专利4项。中国图象图形学学会遥感专业委员会委员,IEEE会员。担任IEEE TGRS、TNNLS、JSTARS等期刊审稿人,获得第一届“高谱成像杯”高光谱遥感数据处理与应用大赛二等奖、第四届全国成像光谱技术与应用研讨会优秀学术报告奖、2025地理信息科技进步奖一等奖。主持国家自然科学基金青年项目,广东省面上项目,作为课题骨干参与国家自然科学基金面上项目等科研课题。
学历背景
2013-2018 武汉大学 测绘遥感信息工程国家重点实验室 工学博士
2009-2013 武汉大学 测绘学院 工学学士
工作经历
2021.10-至今 中山大学地理科学与规划学院 副教授 硕士生导师
2020.11-2021.09 慕尼黑工业大学 研究员
2018.10-2020.09 德国宇航中心 博士后
主要研究方向
高光谱遥感图像处理、海岸带遥感
混合像元分解、目标探测、分类
智能计算
机器学习、深度学习
欢迎感兴趣的同学加入!!!团队科研氛围浓厚,有国内外交流合作机会,欢迎地信/遥感/计算机/数学等专业背景的学生报考申请。
长期接收本科生到课题组开展科研训练,欢迎联系!
论文专著
一作/通讯期刊论文
- R. Liu, M. Zhou, J. Yang, and J. Wang, "Adaptive Smooth Adversarial Learning for Cross-Domain Hyperspectral Image Classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 63, pp. 1-17, 2025, Art no. 5529017, DOI: 10.1109/TGRS.2025.3620393.
- C. Lei, R. Deng*, R. Liu*, J. Li, Y. Guo, J. Yang, Z. Hua, and R. Zhang, "Advancing Multispectral Image-Derived Physics-Based Bathymetry: Multiobjective Evolutionary Computation for Shallow Water Depth Retrieval," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 18, pp. 23858-23878, 2025, doi: 10.1109/JSTARS.2025.3595207.
- J. Liang, J. Yang*, R. Liu*, Q. Liu, and P. Zhu, "Spectral Structure-Aware Initialization and Probability-Consistent Self-Training for Cross-Scene Hyperspectral Image Classification," IEEE Geoscience and Remote Sensing Letters, vol. 22, pp. 1-5, 2025, Art no. 5507205, doi: 10.1109/LGRS.2025.3575600.
- J. Wu#, R. Liu#, and N. Wang, "Contrastive Learning-Based Hyperspectral Image Target Detection Using a Gated Dual-Path Network," Remote Sensing, vol. 17, no. 14, 2025, doi: 10.3390/rs17142345
- M. Hu, C. Wu*, R. Liu* and L. Zhang, "ACR-Net: Adaptive Correlation Refined Hyperspectral Unmixing," IEEE Transactions on Geoscience and Remote Sensing, vol. 63, pp. 1-15, 2025, Art no. 5517315, doi: 10.1109/TGRS.2025.3581078.
- R. Liu, Z. Li, J. Yang*, J. Sun and Q. Liu, "Hyper-LKCNet: Exploring the Utilization of Large Kernel Convolution for Hyperspectral Image Classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 18, pp. 13950-13966, 2025, doi: 10.1109/JSTARS.2025.3571954.
- P. Wang, L. Xie, X. Qin, and R. Liu*, "Multiobjective multi-space collaboration model for addressing spectral variability in hyperspectral image unmixing," Applied Soft Computing, vol. 170, pp. 112679, 2025, doi: 10.1016/j.asoc.2024.112679.
- P. Wang, R. Liu* and L. Zhang, "MAT-Net: Multiscale Aggregation Transformer Network for Hyperspectral Unmixing," IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-15, 2024, Art no. 5538115, doi: 10.1109/TGRS.2024.3494795.
- R. Liu, J. Wu, D. Zhu* and B. Du, "Weighted Discriminative Collaborative Competitive Representation With Global Dictionary for Hyperspectral Target Detection," IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-13, 2024, Art no. 5524613, doi: 10.1109/TGRS.2024.3432883.
- R. Liu, C. Lei, L. Xie, and X. Qin*. "A Novel Endmember Bundle Extraction Framework for Capturing Endmember Variability by Dynamic Optimization," IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-17, 2024, Art no. 5505217, doi: 10.1109/TGRS.2024.3354046.
- C. Lei, R. Liu*, Y. Tian*. "Two-Stage Evolutionary Algorithm Based on Subspace Specified Searching for Hyperspectral Endmember Extraction," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 732-747, 2024, doi: 10.1109/JSTARS.2023.3333955.
- R. Liu, P. Wang, B. Du, and B. Qu. "Endmember Bundle Extraction Based on Improved Multiobjective Particle Swarm Optimization," IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 5506405, doi: 10.1109/LGRS.2023.3287919.
- L. Chen, J. Liu*, S. Sun, W. Chen, B. Du, and R. Liu*. "An Iterative GLRT for Hyperspectral Target Detection Based on Spectral Similarity and Spatial Connectivity Characteristics," IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-11, 2023, Art no. 5505811, doi: 10.1109/TGRS.2023.3252052.
- M. Liu, Z. Chai, H. Deng, and R. Liu*. "A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 4297-4306, 2022, doi: 10.1109/JSTARS.2022.3177235.
- T. Yang, X. Tang and R. Liu*, "Dual temporal gated multi-graph convolution network for taxi demand prediction," Neural Computing and Applications, vol. 35, pp. 13119–13134, 2023, doi: 10.1007/s00521-021-06092-6.
- Q. Shi, X. Tang, T. Yang, R. Liu* and L. Zhang, "Hyperspectral Image Denoising Using a 3-D Attention Denoising Network," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 12, pp. 10348-10363, 2021, doi: 10.1109/TGRS.2020.3045273.
- R. Liu and X. Zhu*, "Endmember Bundle Extraction Based on Multiobjective Optimization," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 10, pp. 8630-8645, 2021, doi: 10.1109/TGRS.2020.3037249.
- B. Du, Q. Wei and R. Liu*, "An Improved Quantum-Behaved Particle Swarm Optimization for Endmember Extraction," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 6003-6017, Aug. 2019, doi: 10.1109/TGRS.2019.2903875.
- R. Liu, L. Zhang, and B. Du, "A Novel Endmember Extraction Method for Hyperspectral Imagery Based on Quantum-Behaved Particle Swarm Optimization," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 4, pp. 1610-1631, April 2017, doi: 10.1109/JSTARS.2016.2640274.
- R. Liu, B. Du, and L. Zhang,"Multiobjective Optimized Endmember Extraction for Hyperspectral Image," Remote Sensing, vol. 9, no. 6, pp. 558, 2017, doi: https://doi.org/10.3390/rs9060558.
- R. Liu, B. Du, and L. Zhang, "Hyperspectral Unmixing via Double Abundance Characteristics Constraints Based NMF," Remote Sensing, vol. 8, no.6, pp. 464, 2016, doi: https://doi.org/10.3390/rs8060464.
- R. Liu, B. Du, and L. Zhang, "Endmember number estimation for hyperspectral imagery based on vertex component analysis," Journal of Applied Remote Sensing, vol. 8, no. 1, pp. 085093, 2014, doi: https://doi.org/10.1117/1.JRS.8.085093.
其它合作论文
- 梁业恒,欧阳宇纯,许敏端,邓孺孺,雷聪,徐丹,郭昱,谷钰泽,刘蓉. 水中重金属的光学参数计算方法及光谱分析——以典型铅化合物为例[J]. 光谱学与光谱分析, 2025, 45(08): 2149-2155, DOI: 10.3964/j.issn.1000-0593(2025)08-2149-07.
- Qin, X., Xu, B., Wang, C., Liu, L., Xie, L., Liu, R., … Chen, X. (2025). Enhanced mask R-CNN for luminaire detection through brightness balancing and distribution-guided optimization in tunnels. International Journal of Digital Earth, 18(1). https://doi.org/10.1080/17538947.2025.2482102
- C. You, N. Wang, D. Zhu, R. Liu and W. Li, "High-Resolution Remote Sensing Change Detection with Edge-Guided Feature Enhancement," IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2025.3555584.
- C. Lei, R. Liu, Z. Kuang, and R. Deng, "An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images." Remote Sensing, Vol. 16, no.21, pp. 4038, 2024.
- X. Qin, Y. Huang, C. Wang, K. Jiang, L. Xie, R. Liu, X. Shi, X. Chen, B. Zhang, "A temporary soil dump settlement and landslide risk analysis using the improved small baseline subset-InSAR and continuous medium model." International Journal of Applied Earth Observation and Geoinformation, Vol. 128, pp.103760, 2024.
- J. Hu, R. Liu, D. Hong, A. Camero, J. Yao, M. Schneider, F. Kurz, K. Segl, and X. Zhu. "MDAS: A new multimodal benchmark dataset for remote sensing," Earth System Science Data, vol. 15, no. 1, pp. 113–131, 2023.
- L. Tong, B. Du, R. Liu, L. Zhang and K. C. Tan, "Hyperspectral Endmember Extraction by (μ + λ) Multiobjective Differential Evolution Algorithm Based on Ranking Multiple Mutations," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 3, pp. 2352-2364, March 2021.
- L. Tong, B. Du, R. Liu and L. Zhang, "An Improved Multiobjective Discrete Particle Swarm Optimization for Hyperspectral Endmember Extraction," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 10, pp. 7872-7882, Jun. 2019.
- Q. Cheng, B. Du, L. Zhang and R. Liu, "ANSGA-III: A Multiobjective Endmember Extraction Algorithm for Hyperspectral Images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 2, pp. 700-721, Feb. 2019.
- 张良培, 刘蓉, 杜博. 使用量子优化算法进行高光谱遥感影像处理综述[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1811-1818.
会议论文
- J. Wang, J. Yang, and R. Liu, "Joint Multi-Scale Spatial-Spectral-Textual Features for Cross-Scene Hyperspectral Image Classification," in 2025 Joint International Conference on Automation-Intelligence-Safety (ICAIS) & International Symposium on Autonomous Systems (ISAS), 2025, pp. 1-6.
- J. Wang and R. Liu, "Hyperspectral Unmixing via Multi-scale Representation by CNN-BiLSTM and Transformer Network," in 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 2024, pp. 1-6.
- R. Liu, B. Du and L. Zhang, "Multiobjective endmember extraction for hyperspectral image," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 2017, pp. 1161-1164, doi: 10.1109/IGARSS.2017.8127163.
发明专利
刘蓉,杜博,张良培,张乐飞,一种高光谱图像混合像元分解算法,专利号:CN105787523B,2019.
杜博,刘蓉,张良培,张乐飞,一种基于量子粒子群算法的高光谱图像端元提取方法,专利号:CN105787957B,2018
科研项目
- 广东省科学技术厅,面上项目,端元不确定条件下的高光谱遥感图像混合像元分解研究,2024-01-01至2026-12-31,主持。
- 国家自然科学基金委员会, 青年科学基金项目, 62201622, 基于进化计算的光谱可变混合像元分解研究, 2023-01-01 至 2025-12-31, 主持。
- 广州市科学技术局,广州市科技计划项目,广州市地表材质分析的高光谱图像混合像元分解研究,2023-04-01 至 2025-03-31,主持。
- 广州市农业和社会发展科技专题重点研发计划,基于无人机多源遥感的田间表型信息解析技术及其应用, 2024B03J1266, 2024-2025, 参与。
- 广东省基础与应用基础研究基金委员会,面上项目,基于无人机高光谱遥感的冬种马铃薯叶片养分反演研究,2023-01-01 至 2025-12-31, 参与。
- Helmholtz AI Project, “Weakly Supervised Detection and Monitoring of Earth Surface Anomalies from Optical Satellite Image Time Series”, 2022-01-01 至 2024-12-31, 参与。
- 国家自然科学基金委员会, 面上项目, 41871243, 量子优化理论的高光谱遥感图像端元提取与目标探测, 2019-01-01 至 2022-12-31, 参与。
- 国家自然科学基金委员会, 青年科学基金项目, 61801336, 高光谱遥感图像超图迁移学习方法研究, 2019-01-01 至 2021-12-31, 参与。
- 国家自然科学基金委员会, 青年科学基金项目, 61601333, 基于慢特征分析的高分辨率遥感影像场景变化检测方法研究, 2017-01-01 至 2019-12-31, 参与。






