个人简介
林尚荣,博士,中山大学地理科学与规划学院副教授、硕士生导师。主要从事陆地生态系统总初级生产力观测及模拟研究,研究方向包括:1)构建陆地生态系统总初级生产力遥感估算模型;2)改进植被生态过程系统模型中植被生产力模拟方法;3)生产高空间分辨率植被总初级生产力产品。主要成果发表在Global biochemical cycles, International Journal of Applied Earth Observation and Geoinformation, Remote sensing, Progress in Physical Geography等地学、遥感、生态专业领域权威期刊上。
工作经历
2024/02 至今 中山大学 地理科学与规划学院 副教授
2022/09 ~2024/01 中山大学 大气科学学院 特聘副研究员
2020/09 ~2022/08 中山大学 大气科学学院 博士后
合作导师: 袁文平 教授
学历背景
2015/09 ~2020/07 中国科学院大学-空天信息创新研究院
地图学与地理信息系统 博士 导师:柳钦火 研究员
期间2018/11 ~2019/12 加拿大不列颠哥伦比亚大学
联合培养博士 导师:Nicholas Coops 院士(加拿大皇家科学院)
2011/09 ~ 2015/07 华南师范大学 地理信息系统 学士
学术兼职
担任 Nature Ecology & Evolution, Nature Communication, Remote Sensing of Environment, Earth System Science Data, ISPRS Journal of Photogrammetry and Remote Sensing, Agricultural and Forest Meteorology, International Journal of Applied Earth Observation and Geoinformation, Journal of Hydrology, Forest Ecology and Management, Giscience & Remote Sensing, Ecological Modelling, Geo-spatial Information Science, European Journal of Remote Sensing,Remote Sensing, Science of Remote sensing, Journal of Environmental Management, Global and Planetery Change,International Journal of Digital Earth, Water, Climate, Land, Forests, ISPRS International Journal of Geo-Information, Transactions in Earth, Environment, and Sustainability, Sensors, Atmosphere, Agronomy, Sustainability, International Journal of Environmental Research and Public Health等地学、遥感、生态专业期刊审稿人。
加入我的团队
本人团队工作理念遵循平等、互惠;让学生真正学习到能够应付往后人生的思维模式以及工作技能。
如果您对“植被光合作用模拟”,“植被定量遥感”,“全球变化生态学”或我的其他研究方向感兴趣,想攻读硕士研究生;开展合作研究或应聘研究助理;或作为中山大学本科生到我的研究小组进行研究性学习(大三或者大二)、大学生创新创业训练(挑战杯等)、本科生毕业论文设计(非常欢迎有志于在本科期间发表学术论文的学生),请发送邮件至linshr6@mail.sysu.edu.cn,或校内学生可直接企业微信联系。热忱欢迎计算机科学、地理科学、遥感科学、生态学、数学相关专业本科学生报考。
2024~2027年间研究型学习方向:
1、森林冠层碳水循环过程模拟
2、植被光合作用野外观测数据分析
3、深度学习方法提取植被叶片形态
4、国产云计算平台AIearth插件开发
亦欢迎联系本科生数学建模竞赛指导。
课程教学 及 学生培养
本科生课程:《自然资源学》(2025开始)
研究生课程:《地球科学数据处理与应用》(2024开始);《现代地学模型方法及其应用》(2024开始);《全球变化与区域响应》(2024)
研究生:陶源(2024);赖婧雯(2024)
本科生:邓**(2025毕设);林**(2025毕设,合带)
具体研究方向
1、构建陆地生态系统总初级生产力遥感估算模型 (生态学、遥感科学方向)
基于遥感数据直接估算植被生产力以及光合作用模型关键参数
(1)Lin, S., Hao D., Zheng Y., Zhang H., Wang C., and Yuan W.. Multi-site assessment of the potential of fine resolution red-edge vegetation indices for estimating gross primary production. International Journal of Applied Earth Observation and Geoinformation 113 (2022): 102978.
(2)Lin, S., Coops, N. C., Tortini, R., Jia, W., Nesic, Z., Beamesderfer, E., ... & Liu, Q. (2021). Species and stand-age driven differences in photochemical reflectance index and light use efficiency across four temperate forests. International Journal of Applied Earth Observation and Geoinformation, 98, 102308.
(3)Lin, S., Li, J., Liu, Q., Li, L., Zhao, J., & Yu, W. (2019). Evaluating the effectiveness of using vegetation indices based on red-edge reflectance from Sentinel-2 to estimate gross primary productivity. Remote Sensing, 11(11), 1303.
(4)Zhang H., Li J., Liu Q., Lin S., Huete A., Liu L., Croft H. et al. A novel red‐edge spectral index for retrieving the leaf chlorophyll content. Methods in Ecology and Evolution (2022).
(5)Gu, C., Li, J., Liu, Q., Zhang, H., Huete, A., Fang, H., Liu, L., Mumtaz, F., Lin S., Wang X., Dong Y., Zhao J., Bai J., Yu W., Liu C., & Guan, L. (2025). Deriving leaf-scale chlorophyll index (CIleaf) from canopy reflectance by correcting for the canopy multiple scattering based on spectral invariant theory. Remote Sensing of Environment, 322, 114692.
利用遥感数据结合植被光合作用过程构建植被总生产力模型
(1)Lin, S., Li, J., Liu, Q., Gioli, B., Paul-Limoges, E., Buchmann, N., ... & Yuan, W. (2021). Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type. International Journal of Applied Earth Observation and Geoinformation, 100, 102328.
(2)Lin, S., Li, J., Liu, Q., Huete, A., & Li, L. (2018). Effects of forest canopy vertical stratification on the estimation of gross primary production by remote sensing. Remote Sensing, 10(9), 1329.
总结陆地生产力遥感估算模型研究进展
(1)Yuan, W.#, Lin, S.#, & Wang, X. (2022). Progress of studies on satellite-based terrestrial vegetation production models in China. Progress in Physical Geography: Earth and Environment, 03091333221114864. (共同一作)
(2)林尚荣, 李静, 柳钦火.陆地总初级生产力遥感估算精度分析. 遥感学报,2018
2、改进植被生态系统模型中植被生产力模拟方法 (地球系统模式、生态学方向)
系统总结植被生态系统过程模型中植被生产力年际变化低估,进一步阐明植被生态系统过程模型生产力估算不确定性;
Lin, S.#, Hu, Z.#, Wang, Y., Chen, X., He, B., Song, Z., ... & Yuan, W. (2023). Underestimated interannual variability of terrestrial vegetation production by terrestrial ecosystem models. Global Biogeochemical Cycles, e2023GB007696.(共同一作)
3、生产高空间分辨率植被总初级生产力产品 (遥感科学方向)
Hi-GLASS植被生产力模型构建及产品发展
(1)Lin, S., Huang, X., Wang, C. ....& Yuan W. (2024) A 30-m gross primary production dataset from 2016 to 2020 in China. Scientific Data 11, 1065 . https://doi.org/10.1038/s41597-024-03893-x
(2)Lin, S., Huang X., Zheng Y., Zhang X., and Yuan W. An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution. Remote Sensing 14, no. 11 (2022): 2651.
(3) Huang, X., Zheng, Y., Zhang, H., Lin, S., Liang, S., Li, X., ... & Yuan, W. (2022). High spatial resolution vegetation gross primary production product: Algorithm and validation. Science of Remote Sensing, 100049.
(4)Huang, X., Lin, S., Li, X., Ma, M., Wu, C., & Yuan, W. (2022). How Well Can Matching High Spatial Resolution Landsat Data with Flux Tower Footprints Improve Estimates of Vegetation Gross Primary Production. Remote Sensing, 14(23), 6062.
4、全球变化生态学领域
(1)Lu, H., Qin, Z., Lin, S., Chen, X., Chen, B., He, B., ... & Yuan, W. (2022). Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nature communications, 13(1), 1-4.
(2)He, B., Chen, C., Lin, S., Yuan, W., Chen, H. W., Chen, D., ... & Tang, R. (2022). Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. National science review, 9(4), nwab150.
(3)Dong, J., Pang, Z., Lin, S., Zhang, X., Xie, Z., Ren, P., ... & Yuan, W. (2024). Cotton lands induced cooling effect on land surface temperature in Xinjiang, China. Agricultural and Forest Meteorology, 351, 110004.
(4)Xie, J., Yin, G., Ma, D., Chen, R., Zhao, W., Xie, Q., ... Lin,S. & Yuan, W. (2024). Climatic limitations on grassland photosynthesis over the Tibetan Plateau shifted from temperature to water. Science of The Total Environment, 906, 167663.
(5)Wang, C., Wu, Y., Hu, Q., Hu, J., Chen, Y., Lin, S., & Xie, Q. (2022). Comparison of Vegetation Phenology Derived from Solar-Induced Chlorophyll Fluorescence and Enhanced Vegetation Index, and Their Relationship with Climatic Limitations. Remote Sensing, 14(13), 3018.
5、定量遥感产品
(1)Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., ... & Liu, W. (2023). GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth System Science Data, 15(1), 265-293.
(2)Zheng, Y., Li, Z., Pan, B., Lin, S., Dong, J., Li, X., & Yuan, W. (2022). Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sensing, 14(5), 1274.
(3)Zhao, J., Li, J., Liu, Q., Xu, B., Yu, W., Lin, S., & Hu, Z. (2020). Estimating fractional vegetation cover from leaf area index and clumping index based on the gap probability theory. International Journal of Applied Earth Observation and Geoinformation, 90, 102112.
(4)Li, X., Peng, Q., Shen, R., Xu, W., Qin, Z., Lin, S., Ha S., Kong D. & Yuan, W. (2025). Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data. Scientific Data, 12(1), 152.
6、遥感数据处理算法
(1) Zhu, X., Li, J., Liu, Q., Yu, W., Li, S., Zhao, J., ... & Lin, S. (2021). Use of a BP Neural Network and Meteorological Data for Generating Spatiotemporally Continuous LAI Time Series. IEEE Transactions on Geoscience and Remote Sensing.
(2)Li, X., Peng, Q., Zheng, Y., Lin, S., He, B., Qiu, Y., ... & Yuan, W. (2024). Incorporating environmental variables into spatiotemporal fusion model to reconstruct high-quality vegetation index data. IEEE Transactions on Geoscience and Remote Sensing.
(3)Yu, W., Li, J., Liu, Q., Zhao, J., Dong, Y., Wang, C., ...Lin, S... & Zhang, H. (2021). Spatial–Temporal Prediction of Vegetation Index With Deep Recurrent Neural Networks. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
(4) Yu, W., Li, J., Liu, Q., Zhao, J., Dong, Y., Zhu, X., ... Lin, S...& Zhang, Z. (2021). Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data. Remote Sensing, 13(3), 484.
(5) Yu, W., Li, J., Liu, Q., Yin, G., Zeng, Y., Lin, S., & Zhao, J. (2020). A simulation-based analysis of topographic effects on LAI inversion over sloped terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 794-806.
近五年主持的科研基金项目/课题
(1) 国家自然科学基金委员会, 青年科学基金项目, 42101319, 基于遥感观测的光化学指数改进植被生产力模型, 2022-01 至 2024-12, 结题, 主持
(2) 中国博士后科学基金会, 面上项目, 2021M703658, 基于卫星遥感红边及光化学指数改进植被生产力模型, 2021-11 至 2022-11, 结题, 主持
(3) 科技部国家重点研发计划项目,2023YFF1303600,生态系统结构与过程关键参数反演与三维实景重建技术,2023-11至2026-10,在研,子课题负责人
(4) 中山大学中青年教师科研能力提升项目,2021-01 至 2021-12, 结题,共同主持
近五年参加的科研基金项目/课题
(1) 国家自然科学基金委员会, 专项项目, 42141020, 不同碳中和路径下自然生态系统固碳增汇的可行性和经济性评估研究, 2022-01 至 2025-12,在研, 参与
(2) 国防科工局,高分辨率对地观测系统重大专项,30-Y20A03-9003-17/18,GF-6卫星宽幅相机影像植被参数定量反演技术,2018.1至2019.12,已结题,项目骨干
(3) 国家自然科学基金委员会, 面上项目, 41871265, 多源遥感数据协同反演植被叶面积指数研究, 2019-01 至 2022-12,结题, 参与
(4) 国家自然科学基金委员会, 面上项目, 41871252, 非均匀地表水热通量遥感中的基于对象方法研究, 2019-01 至 2022-12,结题, 参与
(5) 国家自然科学基金委员会, 青年科学基金项目, 41701401, 复杂地形下植被遥感辐射传输建模及叶面积指数反演研究, 2018-01 至 2020-12, 结题, 参与